4 research outputs found

    A review of closed-form Cramér-Rao Bounds for DOA estimation in the presence of Gaussian noise under a unified framework

    Get PDF
    The Cramér-Rao Bound (CRB) for direction of arrival (DOA) estimation has been extensively studied over the past four decades, with a plethora of CRB expressions reported for various parametric models. In the literature, there are different methods to derive a closed-form CRB expression, but many derivations tend to involve intricate matrix manipulations which appear difficult to understand. Starting from the Slepian-Bangs formula and following the simplest derivation approach, this paper reviews a number of closed-form Gaussian CRB expressions for the DOA parameter under a unified framework, based on which all the specific CRB presentations can be derived concisely. The results cover three scenarios: narrowband complex circular signals, narrowband complex noncircular signals, and wideband signals. Three signal models are considered: the deterministic model, the stochastic Gaussian model, and the stochastic Gaussian model with the a priori knowledge that the sources are spatially uncorrelated. Moreover, three Gaussian noise models distinguished by the structure of the noise covariance matrix are concerned: spatially uncorrelated noise with unknown either identical or distinct variances at different sensors, and arbitrary unknown noise. In each scenario, a unified framework for the DOA-related block of the deterministic/stochastic CRB is developed, which encompasses one class of closed-form deterministic CRB expressions and two classes of stochastic ones under the three noise models. Comparisons among different CRBs across classes and scenarios are presented, yielding a series of equalities and inequalities which reflect the benchmark for the estimation efficiency under various situations. Furthermore, validity of all CRB expressions are examined, with some specific results for linear arrays provided, leading to several upper bounds on the number of resolvable Gaussian sources in the underdetermined case

    Multi-source parameter estimation and tracking using antenna arrays

    Get PDF
    This thesis is concerned with multi-source parameter estimation and tracking using antenna arrays in wireless communications. Various multi-source parameter estimation and tracking algorithms are presented and evaluated. Firstly, a novel multiple-input multiple-output (MIMO) communication system is proposed for multi-parameter channel estimation. A manifold extender is presented for increasing the degrees of freedom (DoF). The proposed approach utilises the extended manifold vectors together with superresolution subspace type algorithms, to achieve the estimation of delay, direction of departure (DOD) and direction of arrival (DOA) of all the paths of the desired user in the presence of multiple access interference (MAI). Secondly, the MIMO system is extended to a virtual-spatiotemporal system by incorporating the temporal domain of the system towards the objective of further increasing the degrees of freedom. In this system, a multi-parameter es- timation of delay, Doppler frequency, DOD and DOA of the desired user, and a beamformer that suppresses the MAI are presented, by utilising the proposed virtual-spatiotemporal manifold extender and the superresolution subspace type algorithms. Finally, for multi-source tracking, two tracking approaches are proposed based on an arrayed Extended Kalman Filter (arrayed-EKF) and an arrayed Unscented Kalman Filter (arrayed-UKF) using two type of antenna arrays: rigid array and flexible array. If the array is rigid, the proposed approaches employ a spatiotemporal state-space model and a manifold extender to track the source parameters, while if it is flexible the array locations are also tracked simultaneously. Throughout the thesis, computer simulation studies are presented to investigate and evaluate the performance of all the proposed algorithms.Open Acces

    DOA Estimation for Noncircular Sources with Multiple Noncoherent Subarrays

    No full text
    corecore