29 research outputs found

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Analysis and Design of Compact Antenna Arrays

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Detection and Tracking of MIMO Propagation Path Parameters Using State-Space Approach

    Full text link

    Über die GPS-basierte Bestimmung troposphärischer Laufzeitverzögerungen

    Get PDF
    One major problem of precise GPS data analysis is that of modeling wetdelays with high precision. All conventional models have to fail in this task due to the impossibility of modeling wet delays solely from surface measurements like temperature and relative humidity. Actually, the non-hydrostatic component of the tropospheric propagation delay is highly influenced by the distribution of water vapor in the lower troposphere which cannot be sufficiently predicted with sole help of surface measurements. A work-around is to include atmospheric parameters as additional unknowns in the analysis of GPS data from permanent monitor stations that turns out to improve the quality of position estimates. Moreover, knowledge of zenith wet delays allows to obtain a highly interesting value for climatology and meteorology: integrated or precipitable water vapor being important for the energy balance of the atmosphere and holds share of more than 60% of the natural greenhouse effect. GPS can thereby contribute to the improvement of climate models and weather forecasting. This work outlines the application of ground-based GPS to climate research and meteorology without omitting the fact that precise GPS positioning can also highly benefit from using numerical weather models for tropospheric delay determination for applications where GPS troposphere estimation is not possible, for example kinematic and rapid static surveys. In this sense, the technique of GPS-derived tropospheric delays is seen as mutually improving both disciplines, precise positioning as well as meteorology and climatology

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Event-Based Algorithms For Geometric Computer Vision

    Get PDF
    Event cameras are novel bio-inspired sensors which mimic the function of the human retina. Rather than directly capturing intensities to form synchronous images as in traditional cameras, event cameras asynchronously detect changes in log image intensity. When such a change is detected at a given pixel, the change is immediately sent to the host computer, where each event consists of the x,y pixel position of the change, a timestamp, accurate to tens of microseconds, and a polarity, indicating whether the pixel got brighter or darker. These cameras provide a number of useful benefits over traditional cameras, including the ability to track extremely fast motions, high dynamic range, and low power consumption. However, with a new sensing modality comes the need to develop novel algorithms. As these cameras do not capture photometric intensities, novel loss functions must be developed to replace the photoconsistency assumption which serves as the backbone of many classical computer vision algorithms. In addition, the relative novelty of these sensors means that there does not exist the wealth of data available for traditional images with which we can train learning based methods such as deep neural networks. In this work, we address both of these issues with two foundational principles. First, we show that the motion blur induced when the events are projected into the 2D image plane can be used as a suitable substitute for the classical photometric loss function. Second, we develop self-supervised learning methods which allow us to train convolutional neural networks to estimate motion without any labeled training data. We apply these principles to solve classical perception problems such as feature tracking, visual inertial odometry, optical flow and stereo depth estimation, as well as recognition tasks such as object detection and human pose estimation. We show that these solutions are able to utilize the benefits of event cameras, allowing us to operate in fast moving scenes with challenging lighting which would be incredibly difficult for traditional cameras

    Underwater & out of sight: towards ubiquity in underwater robotics

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.The Earth's oceans holds a wealth of information currently hidden from us. Effective measurement of its properties could provide a better understanding of our changing climate and insights into the creatures that inhabit its waters. Autonomous underwater vehicles (AUVs) hold the promise of penetrating the ocean environment and uncovering its mysteries; and progress in underwater robotics research over the past three decades has resulted in vehicles that can navigate reliably and operate consistently, providing oceanographers with an additional tool for studying the ocean. Unfortunately, the high cost of these vehicles has stifled the democratization of this technology. We believe that this is a consequence of two factors. Firstly, reliable navigation on conventional AUVs has been achieved through the use of a sophisticated sensor system, namely the Doppler velocity log (DVL)-aided inertial navigation system (INS), which drives up vehicle cost, power use and size. Secondly, deployment of these vehicles is expensive and unwieldy due to their complexity, size and cost, resulting in the need for specialized personnel for vehicle operation and maintenance. The recent development of simpler, low-cost, miniature underwater robots provides a solution that mitigates both these factors; however, removing the expensive DVL-aided INS means that they perform poorly in terms of navigation accuracy. We address this by introducing a novel acoustic system that enables AUV self-localization without requiring a DVL-aided INS or on-board active acoustic transmitters. We term this approach Passive Inverted Ultra-Short Baseline (piUSBL) positioning. The system uses a single acoustic beacon and a time-synchronized, vehicle-mounted, passive receiver array to localize the vehicle relative to this beacon. Our approach has two unique advantages: first, a single beacon lowers cost and enables easy deployment; second, a passive receiver allows the vehicle to be low-power, low-cost and small, and enables multi-vehicle scalability. Providing this new generation of small and inexpensive vehicles with accurate navigation can potentially lower the cost of entry into underwater robotics research and further its widespread use for ocean science. We hope that these contributions in low-cost underwater navigation will enable the ubiquitous and coordinated use of robots to explore and understand the underwater domain.This research was funded and supported by a number of sponsors; we gratefully acknowledge them below. Defense Advanced Research Projects Agency (DARPA) and SSC Pacific via Applied Physical Sciences Corp. (APS) under contract number N66001-11-C-4115. SSC Pacific via Applied Physical Sciences Corp. (APS) under award number N66001-14-C-4031. Air Force via Lincoln Laboratory under award number FA8721-05-C-0002. Office of Naval Research (ONR) via University of California-San Diego under award number N00014-13-1-0632. Defense Advanced Research Projects Agency (DARPA) via Applied Physical Sciences Corp. (APS) under award number HR0011-18-C-0008. Office of Naval Research (ONR) under award number N00014-17-1-2474

    Location of wideband impulsive noise source

    Get PDF
    corecore