98 research outputs found

    Complex Sparse Signal Recovery with Adaptive Laplace Priors

    Full text link
    Because of its self-regularizing nature and uncertainty estimation, the Bayesian approach has achieved excellent recovery performance across a wide range of sparse signal recovery applications. However, most methods are based on the real-value signal model, with the complex-value signal model rarely considered. Typically, the complex signal model is adopted so that phase information can be utilized. Therefore, it is non-trivial to develop Bayesian models for the complex-value signal model. Motivated by the adaptive least absolute shrinkage and selection operator (LASSO) and the sparse Bayesian learning (SBL) framework, a hierarchical model with adaptive Laplace priors is proposed for applications of complex sparse signal recovery in this paper. The proposed hierarchical Bayesian framework is easy to extend for the case of multiple measurement vectors. Moreover, the space alternating principle is integrated into the algorithm to avoid using the matrix inverse operation. In the experimental section of this work, the proposed algorithm is concerned with both complex Gaussian random dictionaries and directions of arrival (DOA) estimations. The experimental results show that the proposed algorithm offers better sparsity recovery performance than the state-of-the-art methods for different types of complex signals

    Bayesian learning scheme for sparse DOA estimation based on maximum-a-posteriori of hyperparameters

    Get PDF
    In this paper, the problem of direction of arrival estimation is addressed by employing Bayesian learning technique in sparse domain. This paper deals with the inference of sparse Bayesian learning (SBL) for both single measurement vector (SMV) and multiple measurement vector (MMV) and its applicability to estimate the arriving signal’s direction at the receiving antenna array; particularly considered to be a uniform linear array. We also derive the hyperparameter updating equations by maximizing the posterior of hyperparameters and exhibit the results for nonzero hyperprior scalars. The results presented in this paper, shows that the resolution and speed of the proposed algorithm is comparatively improved with almost zero failure rate and minimum mean square error of signal’s direction estimate

    Sparse Modeling of Grouped Line Spectra

    Get PDF
    This licentiate thesis focuses on clustered parametric models for estimation of line spectra, when the spectral content of a signal source is assumed to exhibit some form of grouping. Different from previous parametric approaches, which generally require explicit knowledge of the model orders, this thesis exploits sparse modeling, where the orders are implicitly chosen. For line spectra, the non-linear parametric model is approximated by a linear system, containing an overcomplete basis of candidate frequencies, called a dictionary, and a large set of linear response variables that selects and weights the components in the dictionary. Frequency estimates are obtained by solving a convex optimization program, where the sum of squared residuals is minimized. To discourage overfitting and to infer certain structure in the solution, different convex penalty functions are introduced into the optimization. The cost trade-off between fit and penalty is set by some user parameters, as to approximate the true number of spectral lines in the signal, which implies that the response variable will be sparse, i.e., have few non-zero elements. Thus, instead of explicit model orders, the orders are implicitly set by this trade-off. For grouped variables, the dictionary is customized, and appropriate convex penalties selected, so that the solution becomes group sparse, i.e., has few groups with non-zero variables. In an array of sensors, the specific time-delays and attenuations will depend on the source and sensor positions. By modeling this, one may estimate the location of a source. In this thesis, a novel joint location and grouped frequency estimator is proposed, which exploits sparse modeling for both spectral and spatial estimates, showing robustness against sources with overlapping frequency content. For audio signals, this thesis uses two different features for clustering. Pitch is a perceptual property of sound that may be described by the harmonic model, i.e., by a group of spectral lines at integer multiples of a fundamental frequency, which we estimate by exploiting a novel adaptive total variation penalty. The other feature, chroma, is a concept in musical theory, collecting pitches at powers of 2 from each other into groups. Using a chroma dictionary, together with appropriate group sparse penalties, we propose an automatic transcription of the chroma content of a signal

    Sparse Bases and Bayesian Inference of Electromagnetic Scattering

    Get PDF
    Many approaches in CEM rely on the decomposition of complex radiation and scattering behavior with a set of basis vectors. Accurate estimation of the quantities of interest can be synthesized through a weighted sum of these vectors. In addition to basis decompositions, sparse signal processing techniques developed in the CS community can be leveraged when only a small subset of the basis vectors are required to sufficiently represent the quantity of interest. We investigate several concepts in which novel bases are applied to common electromagnetic problems and leverage the sparsity property to improve performance and/or reduce computational burden. The first concept explores the use of multiple types of scattering primitives to reconstruct scattering patterns of electrically large targets. Using a combination of isotropic point scatterers and wedge diffraction primitives as our bases, a 40% reduction in reconstruction error can be achieved. Next, a sparse basis is used to improve DOA estimation. We implement the BSBL technique to determine the angle of arrival of multiple incident signals with only a single snapshot of data from an arbitrary arrangement of non-isotropic antennas. This is an improvement over the current state-of-the-art, where restrictions on the antenna type, configuration, and a priori knowledge of the number of signals are often assumed. Lastly, we investigate the feasibility of a basis set to reconstruct the scattering patterns of electrically small targets. The basis is derived from the TCM and can capture non-localized scattering behavior. Preliminary results indicate that this basis may be used in an interpolation and extrapolation scheme to generate scattering patterns over multiple frequencies

    Bayesian Linear Regression with Cauchy Prior and Its Application in Sparse MIMO Radar

    Full text link
    In this paper, a sparse signal recovery algorithm using Bayesian linear regression with Cauchy prior (BLRC) is proposed. Utilizing an approximate expectation maximization(AEM) scheme, a systematic hyper-parameter updating strategy is developed to make BLRC practical in highly dynamic scenarios. Remarkably, with a more compact latent space, BLRC not only possesses essential features of the well-known sparse Bayesian learning (SBL) and iterative reweighted l2 (IR-l2) algorithms but also outperforms them. Using sparse array (SPA) and coprime array (CPA), numerical analyses are first performed to show the superior performance of BLRC under various noise levels, array sizes, and sparsity levels. Applications of BLRC to sparse multiple-input and multiple-output (MIMO) radar array signal processing are then carried out to show that the proposed BLRC can efficiently produce high-resolution images of the targets.Comment: 22 page
    • …
    corecore