33 research outputs found

    DNN-based Speech Synthesis for Indian Languages from ASCII text

    Get PDF
    Text-to-Speech synthesis in Indian languages has a seen lot of progress over the decade partly due to the annual Blizzard challenges. These systems assume the text to be written in Devanagari or Dravidian scripts which are nearly phonemic orthography scripts. However, the most common form of computer interaction among Indians is ASCII written transliterated text. Such text is generally noisy with many variations in spelling for the same word. In this paper we evaluate three approaches to synthesize speech from such noisy ASCII text: a naive Uni-Grapheme approach, a Multi-Grapheme approach, and a supervised Grapheme-to-Phoneme (G2P) approach. These methods first convert the ASCII text to a phonetic script, and then learn a Deep Neural Network to synthesize speech from that. We train and test our models on Blizzard Challenge datasets that were transliterated to ASCII using crowdsourcing. Our experiments on Hindi, Tamil and Telugu demonstrate that our models generate speech of competetive quality from ASCII text compared to the speech synthesized from the native scripts. All the accompanying transliterated datasets are released for public access.Comment: 6 pages, 5 figures -- Accepted in 9th ISCA Speech Synthesis Worksho

    Improving speech synthesis with discourse relations

    Get PDF

    ArTST: Arabic Text and Speech Transformer

    Full text link
    We present ArTST, a pre-trained Arabic text and speech transformer for supporting open-source speech technologies for the Arabic language. The model architecture follows the unified-modal framework, SpeechT5, that was recently released for English, and is focused on Modern Standard Arabic (MSA), with plans to extend the model for dialectal and code-switched Arabic in future editions. We pre-trained the model from scratch on MSA speech and text data, and fine-tuned it for the following tasks: Automatic Speech Recognition (ASR), Text-To-Speech synthesis (TTS), and spoken dialect identification. In our experiments comparing ArTST with SpeechT5, as well as with previously reported results in these tasks, ArTST performs on a par with or exceeding the current state-of-the-art in all three tasks. Moreover, we find that our pre-training is conducive for generalization, which is particularly evident in the low-resource TTS task. The pre-trained model as well as the fine-tuned ASR and TTS models are released for research use.Comment: 11 pages, 1 figure, SIGARAB ArabicNLP 202

    Viseme-based Lip-Reading using Deep Learning

    Get PDF
    Research in Automated Lip Reading is an incredibly rich discipline with so many facets that have been the subject of investigation including audio-visual data, feature extraction, classification networks and classification schemas. The most advanced and up-to-date lip-reading systems can predict entire sentences with thousands of different words and the majority of them use ASCII characters as the classification schema. The classification performance of such systems however has been insufficient and the need to cover an ever expanding range of vocabulary using as few classes as possible is challenge. The work in this thesis contributes to the area concerning classification schemas by proposing an automated lip reading model that predicts sentences using visemes as a classification schema. This is an alternative schema to using ASCII characters, which is the conventional class system used to predict sentences. This thesis provides a review of the current trends in deep learning- based automated lip reading and analyses a gap in the research endeavours of automated lip-reading by contributing towards work done in the region of classification schema. A whole new line of research is opened up whereby an alternative way to do lip-reading is explored and in doing so, lip-reading performance results for predicting s entences from a benchmark dataset are attained which improve upon the current state-of-the-art. In this thesis, a neural network-based lip reading system is proposed. The system is lexicon-free and uses purely visual cues. With only a limited number of visemes as classes to recognise, the system is designed to lip read sentences covering a wide range of vocabulary and to recognise words that may not be included in system training. The lip-reading system predicts sentences as a two-stage procedure with visemes being recognised as the first stage and words being classified as the second stage. This is such that the second-stage has to both overcome the one-to-many mapping problem posed in lip-reading where one set of visemes can map to several words, and the problem of visemes being confused or misclassified to begin with. To develop the proposed lip-reading system, a number of tasks have been performed in this thesis. These include the classification of continuous sequences of visemes; and the proposal of viseme-to-word conversion models that are both effective in their conversion performance of predicting words, and robust to the possibility of viseme confusion or misclassification. The initial system reported has been testified on the challenging BBC Lip Reading Sentences 2 (LRS2) benchmark dataset attaining a word accuracy rate of 64.6%. Compared with the state-of-the-art works in lip reading sentences reported at the time, the system had achieved a significantly improved performance. The lip reading system is further improved upon by using a language model that has been demonstrated to be effective at discriminating between homopheme words and being robust to incorrectly classified visemes. An improved performance in predicting spoken sentences from the LRS2 dataset is yielded with an attained word accuracy rate of 79.6% which is still better than another lip-reading system trained and evaluated on the the same dataset that attained a word accuracy rate 77.4% and it is to the best of our knowledge the next best observed result attained on LRS2

    Prosody generation for text-to-speech synthesis

    Get PDF
    The absence of convincing intonation makes current parametric speech synthesis systems sound dull and lifeless, even when trained on expressive speech data. Typically, these systems use regression techniques to predict the fundamental frequency (F0) frame-by-frame. This approach leads to overlysmooth pitch contours and fails to construct an appropriate prosodic structure across the full utterance. In order to capture and reproduce larger-scale pitch patterns, we propose a template-based approach for automatic F0 generation, where per-syllable pitch-contour templates (from a small, automatically learned set) are predicted by a recurrent neural network (RNN). The use of syllable templates mitigates the over-smoothing problem and is able to reproduce pitch patterns observed in the data. The use of an RNN, paired with connectionist temporal classification (CTC), enables the prediction of structure in the pitch contour spanning the entire utterance. This novel F0 prediction system is used alongside separate LSTMs for predicting phone durations and the other acoustic features, to construct a complete text-to-speech system. Later, we investigate the benefits of including long-range dependencies in duration prediction at frame-level using uni-directional recurrent neural networks. Since prosody is a supra-segmental property, we consider an alternate approach to intonation generation which exploits long-term dependencies of F0 by effective modelling of linguistic features using recurrent neural networks. For this purpose, we propose a hierarchical encoder-decoder and multi-resolution parallel encoder where the encoder takes word and higher level linguistic features at the input and upsamples them to phone-level through a series of hidden layers and is integrated into a Hybrid system which is then submitted to Blizzard challenge workshop. We then highlight some of the issues in current approaches and a plan for future directions of investigation is outlined along with on-going work

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio
    corecore