261 research outputs found

    DNN Driven Speaker Independent Audio-Visual Mask Estimation for Speech Separation

    Get PDF
    Human auditory cortex excels at selectively suppressing background noise to focus on a target speaker. The process of selective attention in the brain is known to contextually exploit the available audio and visual cues to better focus on target speaker while filtering out other noises. In this study, we propose a novel deep neural network (DNN) based audiovisual (AV) mask estimation model. The proposed AV mask estimation model contextually integrates the temporal dynamics of both audio and noise-immune visual features for improved mask estimation and speech separation. For optimal AV features extraction and ideal binary mask (IBM) estimation, a hybrid DNN architecture is exploited to leverages the complementary strengths of a stacked long short term memory (LSTM) and convolution LSTM network. The comparative simulation results in terms of speech quality and intelligibility demonstrate significant performance improvement of our proposed AV mask estimation model as compared to audio-only and visual-only mask estimation approaches for both speaker dependent and independent scenarios

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation and Recognition

    Full text link
    Accurate recognition of cocktail party speech containing overlapping speakers, noise and reverberation remains a highly challenging task to date. Motivated by the invariance of visual modality to acoustic signal corruption, an audio-visual multi-channel speech separation, dereverberation and recognition approach featuring a full incorporation of visual information into all system components is proposed in this paper. The efficacy of the video input is consistently demonstrated in mask-based MVDR speech separation, DNN-WPE or spectral mapping (SpecM) based speech dereverberation front-end and Conformer ASR back-end. Audio-visual integrated front-end architectures performing speech separation and dereverberation in a pipelined or joint fashion via mask-based WPD are investigated. The error cost mismatch between the speech enhancement front-end and ASR back-end components is minimized by end-to-end jointly fine-tuning using either the ASR cost function alone, or its interpolation with the speech enhancement loss. Experiments were conducted on the mixture overlapped and reverberant speech data constructed using simulation or replay of the Oxford LRS2 dataset. The proposed audio-visual multi-channel speech separation, dereverberation and recognition systems consistently outperformed the comparable audio-only baseline by 9.1% and 6.2% absolute (41.7% and 36.0% relative) word error rate (WER) reductions. Consistent speech enhancement improvements were also obtained on PESQ, STOI and SRMR scores.Comment: IEEE/ACM Transactions on Audio, Speech, and Language Processin

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF
    The cocktail party problem comprises the challenging task of understanding a speech signal in a complex acoustic environment, where multiple speakers and background noise signals simultaneously interfere with the speech signal of interest. A signal processing algorithm that can effectively increase the speech intelligibility and quality of speech signals in such complicated acoustic situations is highly desirable. Especially for applications involving mobile communication devices and hearing assistive devices. Due to the re-emergence of machine learning techniques, today, known as deep learning, the challenges involved with such algorithms might be overcome. In this PhD thesis, we study and develop deep learning-based techniques for two sub-disciplines of the cocktail party problem: single-microphone speech enhancement and single-microphone multi-talker speech separation. Specifically, we conduct in-depth empirical analysis of the generalizability capability of modern deep learning-based single-microphone speech enhancement algorithms. We show that performance of such algorithms is closely linked to the training data, and good generalizability can be achieved with carefully designed training data. Furthermore, we propose uPIT, a deep learning-based algorithm for single-microphone speech separation and we report state-of-the-art results on a speaker-independent multi-talker speech separation task. Additionally, we show that uPIT works well for joint speech separation and enhancement without explicit prior knowledge about the noise type or number of speakers. Finally, we show that deep learning-based speech enhancement algorithms designed to minimize the classical short-time spectral amplitude mean squared error leads to enhanced speech signals which are essentially optimal in terms of STOI, a state-of-the-art speech intelligibility estimator.Comment: PhD Thesis. 233 page

    Single-Microphone Speech Enhancement and Separation Using Deep Learning

    Get PDF

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance
    corecore