42 research outputs found

    DNA-inspired online behavioral modeling and its application to spambot detection

    Get PDF
    We propose a strikingly novel, simple, and effective approach to model online user behavior: we extract and analyze digital DNA sequences from user online actions and we use Twitter as a benchmark to test our proposal. We obtain an incisive and compact DNA-inspired characterization of user actions. Then, we apply standard DNA analysis techniques to discriminate between genuine and spambot accounts on Twitter. An experimental campaign supports our proposal, showing its effectiveness and viability. To the best of our knowledge, we are the first ones to identify and adapt DNA-inspired techniques to online user behavioral modeling. While Twitter spambot detection is a specific use case on a specific social media, our proposed methodology is platform and technology agnostic, hence paving the way for diverse behavioral characterization tasks

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    Better Safe Than Sorry: An Adversarial Approach to Improve Social Bot Detection

    Full text link
    The arm race between spambots and spambot-detectors is made of several cycles (or generations): a new wave of spambots is created (and new spam is spread), new spambot filters are derived and old spambots mutate (or evolve) to new species. Recently, with the diffusion of the adversarial learning approach, a new practice is emerging: to manipulate on purpose target samples in order to make stronger detection models. Here, we manipulate generations of Twitter social bots, to obtain - and study - their possible future evolutions, with the aim of eventually deriving more effective detection techniques. In detail, we propose and experiment with a novel genetic algorithm for the synthesis of online accounts. The algorithm allows to create synthetic evolved versions of current state-of-the-art social bots. Results demonstrate that synthetic bots really escape current detection techniques. However, they give all the needed elements to improve such techniques, making possible a proactive approach for the design of social bot detection systems.Comment: This is the pre-final version of a paper accepted @ 11th ACM Conference on Web Science, June 30-July 3, 2019, Boston, U

    The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race

    Full text link
    Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.Comment: To appear in Proc. 26th WWW, 2017, Companion Volume (Web Science Track, Perth, Australia, 3-7 April, 2017

    Cashtag piggybacking: uncovering spam and bot activity in stock microblogs on Twitter

    Full text link
    Microblogs are increasingly exploited for predicting prices and traded volumes of stocks in financial markets. However, it has been demonstrated that much of the content shared in microblogging platforms is created and publicized by bots and spammers. Yet, the presence (or lack thereof) and the impact of fake stock microblogs has never systematically been investigated before. Here, we study 9M tweets related to stocks of the 5 main financial markets in the US. By comparing tweets with financial data from Google Finance, we highlight important characteristics of Twitter stock microblogs. More importantly, we uncover a malicious practice - referred to as cashtag piggybacking - perpetrated by coordinated groups of bots and likely aimed at promoting low-value stocks by exploiting the popularity of high-value ones. Among the findings of our study is that as much as 71% of the authors of suspicious financial tweets are classified as bots by a state-of-the-art spambot detection algorithm. Furthermore, 37% of them were suspended by Twitter a few months after our investigation. Our results call for the adoption of spam and bot detection techniques in all studies and applications that exploit user-generated content for predicting the stock market

    Understanding Bots on Social Media - An Application in Disaster Response

    Get PDF
    abstract: Social media has become a primary platform for real-time information sharing among users. News on social media spreads faster than traditional outlets and millions of users turn to this platform to receive the latest updates on major events especially disasters. Social media bridges the gap between the people who are affected by disasters, volunteers who offer contributions, and first responders. On the other hand, social media is a fertile ground for malicious users who purposefully disturb the relief processes facilitated on social media. These malicious users take advantage of social bots to overrun social media posts with fake images, rumors, and false information. This process causes distress and prevents actionable information from reaching the affected people. Social bots are automated accounts that are controlled by a malicious user and these bots have become prevalent on social media in recent years. In spite of existing efforts towards understanding and removing bots on social media, there are at least two drawbacks associated with the current bot detection algorithms: general-purpose bot detection methods are designed to be conservative and not label a user as a bot unless the algorithm is highly confident and they overlook the effect of users who are manipulated by bots and (unintentionally) spread their content. This study is trifold. First, I design a Machine Learning model that uses content and context of social media posts to detect actionable ones among them; it specifically focuses on tweets in which people ask for help after major disasters. Second, I focus on bots who can be a facilitator of malicious content spreading during disasters. I propose two methods for detecting bots on social media with a focus on the recall of the detection. Third, I study the characteristics of users who spread the content of malicious actors. These features have the potential to improve methods that detect malicious content such as fake news.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    BotTriNet: A Unified and Efficient Embedding for Social Bots Detection via Metric Learning

    Full text link
    A persistently popular topic in online social networks is the rapid and accurate discovery of bot accounts to prevent their invasion and harassment of genuine users. We propose a unified embedding framework called BotTriNet, which utilizes textual content posted by accounts for bot detection based on the assumption that contexts naturally reveal account personalities and habits. Content is abundant and valuable if the system efficiently extracts bot-related information using embedding techniques. Beyond the general embedding framework that generates word, sentence, and account embeddings, we design a triplet network to tune the raw embeddings (produced by traditional natural language processing techniques) for better classification performance. We evaluate detection accuracy and f1score on a real-world dataset CRESCI2017, comprising three bot account categories and five bot sample sets. Our system achieves the highest average accuracy of 98.34% and f1score of 97.99% on two content-intensive bot sets, outperforming previous work and becoming state-of-the-art. It also makes a breakthrough on four content-less bot sets, with an average accuracy improvement of 11.52% and an average f1score increase of 16.70%
    corecore