5,394 research outputs found

    Automated sequence design of nucleic acid hybridization reactions for microRNA detection

    Full text link
    [EN] microRNA (miRNA) can be found in a variety of biological samples and then they represent important molecular markers for early diagnostic strategies. This work (TFG) explores a novel approach based on nested non-enzymatic and enzymatic biochemical processes in vitro. In particular, an automated sequence design algorithm of nucleic acid hybridization reactions for microRNA detection is developed.[ES] Los microRNAs (miRNAs) pueden ser hallados en una gran variedad de muestras biológicas y suponen una fuente importante de marcadores moleculares para estrategias de diagnóstico tempranas. En este trabajo (TFG), se explora un abordaje novedoso basado en procesos bioquímicos anidados enzimáticos y no enzimáticos in vitro. Particularmente, se desarrolla un algoritmo de diseño de secuencias automatizado para reacciones de hibridación de ácidos nucleicos para la detección de microRNA.Goiriz Beltrán, L. (2019). Automated sequence design of nucleic acid hybridization reactions for microRNA detection. http://hdl.handle.net/10251/125058TFG

    Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae)

    Get PDF
    Background: Panicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage. Results: 35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage. Conclusions: The phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.Fil: Burke, Sean V.. Northern Illinois University; Estados UnidosFil: Wysocki, William P.. Northern Illinois University; Estados UnidosFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Craine, Joseph M.. Jonah Ventures; Estados UnidosFil: Pires, J. Chris. University of Missouri; Estados UnidosFil: Edger, Patrick P.. Michigan State University; Estados UnidosFil: Mayfield Jones, Dustin. Donald Danforth Plant Science Center; Estados UnidosFil: Clark, Lynn G.. Iowa State University; Estados UnidosFil: Kelchner, Scot A.. University of Idaho; Estados UnidosFil: Duvall, Melvin R.. Northern Illinois University; Estados Unido

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification

    Get PDF
    Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods

    A new computational framework for the classification and function prediction of long non-coding RNAs

    Get PDF
    Long non-coding RNAs (lncRNAs) are known to play a significant role in several biological processes. These RNAs possess sequence length greater than 200 base pairs (bp), and so are often misclassified as protein-coding genes. Most Coding Potential Computation (CPC) tools fail to accurately identify, classify and predict the biological functions of lncRNAs in plant genomes, due to previous research being limited to mammalian genomes. In this thesis, an investigation and extraction of various sequence and codon-bias features for identification of lncRNA sequences has been carried out, to develop a new CPC Framework. For identification of essential features, the framework implements regularisation-based selection. A novel classification algorithm is implemented, which removes the dependency on experimental datasets and provides a coordinate-based solution for sub-classification of lncRNAs. For imputing the lncRNA functions, lncRNA-protein interactions have been first determined through co-expression of genes which were re-analysed by a sequence similaritybased approach for identification of novel interactions and prediction of lncRNA functions in the genome. This integrates a D3-based application for visualisation of lncRNA sequences and their associated functions in the genome. Standard evaluation metrics such as accuracy, sensitivity, and specificity have been used for benchmarking the performance of the framework against leading CPC tools. Case study analyses were conducted with plant RNA-seq datasets for evaluating the effectiveness of the framework using a cross-validation approach. The tests show the framework can provide significant improvements on existing CPC models for plant genomes: 20-40% greater accuracy. Function prediction analysis demonstrates results are consistent with the experimentally-published findings

    Investigating modularity and transparency within bioinspired connectionist architectures using genetic and epigenetic models

    Get PDF
    Machine learning algorithms allow computers to deal with incomplete data in tasks such as speech recognition and object detection. Some machine learning algorithms take inspiration from biological systems due to useful properties such as robustness, allowing algorithms to be flexible and domain agnostic. This comes at a cost, resulting in difficulty when one attempts to understand the reasoning behind decisions. This is problematic when such models are applied in realworld situations where accountability, legality, and maintenance are of concern. Artificial gene regulatory networks (AGRNs) are a type of connectionist architecture inspired by gene regulatory mechanisms. AGRNs are of interest within this thesis due to their ability to solve tasks in chaotic dynamical systems despite their relatively small size.The overarching aim of this work was to investigate the properties of connectionist architectures to improve the transparency of their execution. Initially, the evolutionary process and internal structure of AGRNs were investigated. Following this, the creation of an external control layer used to improve the transparency of execution of an external connectionist architecture was attempted.When investigating the evolutionary process of AGRNs, pathways were found that when followed, produced more performant networks in a shorter time frame. Evidence that AGRNs are capable of performing well despite internal interference was found when investigating their modularity, where it was also discovered that they do not develop strict modularity consistently. A control layer inspired by epigenetics that selectively deactivates nodes in trained artificial neural networks (ANNs) was developed; the analysis of its behaviour provided an insight into the internal workings of the ANN
    • …
    corecore