18,339 research outputs found

    Reducibility of Gene Patterns in Ciliates using the Breakpoint Graph

    Full text link
    Gene assembly in ciliates is one of the most involved DNA processings going on in any organism. This process transforms one nucleus (the micronucleus) into another functionally different nucleus (the macronucleus). We continue the development of the theoretical models of gene assembly, and in particular we demonstrate the use of the concept of the breakpoint graph, known from another branch of DNA transformation research. More specifically: (1) we characterize the intermediate gene patterns that can occur during the transformation of a given micronuclear gene pattern to its macronuclear form; (2) we determine the number of applications of the loop recombination operation (the most basic of the three molecular operations that accomplish gene assembly) needed in this transformation; (3) we generalize previous results (and give elegant alternatives for some proofs) concerning characterizations of the micronuclear gene patterns that can be assembled using a specific subset of the three molecular operations.Comment: 30 pages, 13 figure

    Genus Ranges of 4-Regular Rigid Vertex Graphs

    Full text link
    We introduce a notion of genus range as a set of values of genera over all surfaces into which a graph is embedded cellularly, and we study the genus ranges of a special family of four-regular graphs with rigid vertices that has been used in modeling homologous DNA recombination. We show that the genus ranges are sets of consecutive integers. For any positive integer nn, there are graphs with 2n2n vertices that have genus range m,m+1,...,m′{m,m+1,...,m'} for all 0≤m<m′≤n0\le m<m'\le n, and there are graphs with 2n−12n-1 vertices with genus range m,m+1,...,m′{m,m+1,...,m'} for all 0≤m<m′<n0\le m<m' <n or 0<m<m′≤n0<m<m'\le n. Further, we show that for every nn there is k<nk<n such that h{h} is a genus range for graphs with 2n−12n-1 and 2n2n vertices for all h≤kh\le k. It is also shown that for every nn, there is a graph with 2n2n vertices with genus range 0,1,...,n{0,1,...,n}, but there is no such a graph with 2n−12n-1 vertices

    Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    Get PDF
    Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of "living fossils." As arthropods, they belong to the Ecdysozoa}, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes, and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Here we use a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers and 5,775 candidate conserved protein coding genes. Comparison to other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications (WGDs) ~ 300 MYA, followed by extensive chromosome fusion

    Tangle analysis of difference topology experiments: applications to a Mu protein-DNA complex

    Full text link
    We develop topological methods for analyzing difference topology experiments involving 3-string tangles. Difference topology is a novel technique used to unveil the structure of stable protein-DNA complexes involving two or more DNA segments. We analyze such experiments for the Mu protein-DNA complex. We characterize the solutions to the corresponding tangle equations by certain knotted graphs. By investigating planarity conditions on these graphs we show that there is a unique biologically relevant solution. That is, we show there is a unique rational tangle solution, which is also the unique solution with small crossing number.Comment: 60 pages, 74 figure

    Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials.

    Get PDF
    BackgroundMutations often accompany DNA replication. Since there may be fewer cell cycles per year in the germlines of long-lived than short-lived angiosperms, the genomes of long-lived angiosperms may be diverging more slowly than those of short-lived angiosperms. Here we test this hypothesis.ResultsWe first constructed a genetic map for walnut, a woody perennial. All linkage groups were short, and recombination rates were greatly reduced in the centromeric regions. We then used the genetic map to construct a walnut bacterial artificial chromosome (BAC) clone-based physical map, which contained 15,203 exonic BAC-end sequences, and quantified with it synteny between the walnut genome and genomes of three long-lived woody perennials, Vitis vinifera, Populus trichocarpa, and Malus domestica, and three short-lived herbs, Cucumis sativus, Medicago truncatula, and Fragaria vesca. Each measure of synteny we used showed that the genomes of woody perennials were less diverged from the walnut genome than those of herbs. We also estimated the nucleotide substitution rate at silent codon positions in the walnut lineage. It was one-fifth and one-sixth of published nucleotide substitution rates in the Medicago and Arabidopsis lineages, respectively. We uncovered a whole-genome duplication in the walnut lineage, dated it to the neighborhood of the Cretaceous-Tertiary boundary, and allocated the 16 walnut chromosomes into eight homoeologous pairs. We pointed out that during polyploidy-dysploidy cycles, the dominant tendency is to reduce the chromosome number.ConclusionSlow rates of nucleotide substitution are accompanied by slow rates of synteny erosion during genome divergence in woody perennials

    Development of novel orthogonal genetic circuits, based on extracytoplasmic function (ECF) σ factors

    Get PDF
    The synthetic biology field aims to apply the engineering 'design-build-test-learn' cycle for the implementation of synthetic genetic circuits modifying the behavior of biological systems. In order to reach this goal, synthetic biology projects use a set of fully characterized biological parts that subsequently are assembled into complex synthetic circuits following a rational, model-driven design. However, even though the bottom-up design approach represents an optimal starting point to assay the behavior of the synthetic circuits under defined conditions, the rational design of such circuits is often restricted by the limited number of available DNA building blocks. These usually consist only of a handful of transcriptional regulators that additionally are often borrowed from natural biological systems. This, in turn, can lead to cross-reactions between the synthetic circuit and the host cell and eventually to loss of the original circuit function. Thus, one of the challenges in synthetic biology is to design synthetic circuits that perform the designated functions with minor cross-reactions (orthogonality). To overcome the restrictions of the widely used transcriptional regulators, this project aims to apply extracytoplasmic function (ECF) σ factors in the design novel orthogonal synthetic circuits. ECFs are the smallest and simplest alternative σ factors that recognize highly specific promoters. ECFs represent one of the most important mechanisms of signal transduction in bacteria, indeed, their activity is often controlled by anti-σ factors. Even though it was shown that the overexpression of heterologous anti-σ factors can generate an adverse effect on cell growth, they represent an attractive solution to control ECF activity. Finally, to date, we know thousands of ECF σ factors, widespread among different bacterial phyla, that are identifiable together with the cognate promoters and anti-σ factors, using bioinformatic approaches. All the above-mentioned features make ECF σ factors optimal candidates as core orthogonal regulators for the design of novel synthetic circuits. In this project, in order to establish ECF σ factors as standard building blocks in the synthetic biology field, we first established a high throughput experimental setup. This relies on microplate reader experiments performed using a highly sensitive luminescent reporter system. Luminescent reporters have a superior signal-to-noise ratio when compared to fluorescent reporters since they do not suffer from the high auto-fluorescence background of the bacterial cell. However, they also have a drawback represented by the constant light emission that can generate undesired cross-talk between neighboring wells on a microplate. To overcome this limitation, we developed a computational algorithm that corrects for luminescence bleed-through and estimates the “true” luminescence activity for each well of a microplate. We show that the correcting algorithm preserves low-level signals close to the background and that it is universally applicable to different experimental conditions. In order to simplify the assembly of large ECF-based synthetic circuits, we designed an ECF toolbox in E. coli. The toolbox allows for the combinatorial assembly of circuits into expression vectors, using a library of reusable genetic parts. Moreover, it also offers the possibility of integrating the newly generated synthetic circuits into four different phage attachment (att) sites present in the genome of E. coli. This allows for a flawless transition between plasmid-encoded and chromosomally integrated genetic circuits, expanding the possible genetic configurations of a given synthetic construct. Moreover, our results demonstrate that the four att sites are orthogonal in terms of the gene expression levels of the synthetic circuits. With the purpose of rationally design ECF-based synthetic circuits and taking advantage of the ECF toolbox, we characterized the dynamic behavior of a set of 15 ECF σ factors, their cognate promoters, and relative anti-σs. Overall, we found that ECFs are non-toxic and functional and that they display different binding affinities for the cognate target promoters. Moreover, our results show that it is possible to optimize the output dynamic range of the ECF-based switches by changing the copy number of the ECFs and target promoters, thus, tuning the input/output signal ratio. Next, by combining up to three ECF-switches, we generated a set of “genetic-timer circuits”, the first synthetic circuits harboring more than one ECF. ECF-based timer circuits sequentially activate a series of target genes with increasing time delays, moreover, the behavior of the circuits can be predicted by a set of mathematical models. In order to improve the dynamic response of the ECF-based constructs, we introduced anti-σ factors in our synthetic circuits. By doing so we first confirmed that anti-σ factors can exert an adverse effect on the growth of E. coli, thus we explored possible solutions. Our results demonstrate that anti-σ factors toxicity can be partially alleviated by generating truncated, soluble variants of the anti-σ factors and, eventually, completely abolished via chromosomal integration of the anti-σ factor-based circuits. Finally, after demonstrating that anti-σ factors can be used to generate a tunable time delay among ECF expression and target promoter activation, we designed ECF/AS-suicide circuits. Such circuits allow for the time-delayed cell-death of E. coli and will serve as a prototype for the further development of ECF/AS-based lysis circuits

    Genome-wide signatures of complex introgression and adaptive evolution in the big cats.

    Get PDF
    The great cats of the genus Panthera comprise a recent radiation whose evolutionary history is poorly understood. Their rapid diversification poses challenges to resolving their phylogeny while offering opportunities to investigate the historical dynamics of adaptive divergence. We report the sequence, de novo assembly, and annotation of the jaguar (Panthera onca) genome, a novel genome sequence for the leopard (Panthera pardus), and comparative analyses encompassing all living Panthera species. Demographic reconstructions indicated that all of these species have experienced variable episodes of population decline during the Pleistocene, ultimately leading to small effective sizes in present-day genomes. We observed pervasive genealogical discordance across Panthera genomes, caused by both incomplete lineage sorting and complex patterns of historical interspecific hybridization. We identified multiple signatures of species-specific positive selection, affecting genes involved in craniofacial and limb development, protein metabolism, hypoxia, reproduction, pigmentation, and sensory perception. There was remarkable concordance in pathways enriched in genomic segments implicated in interspecies introgression and in positive selection, suggesting that these processes were connected. We tested this hypothesis by developing exome capture probes targeting ~19,000 Panthera genes and applying them to 30 wild-caught jaguars. We found at least two genes (DOCK3 and COL4A5, both related to optic nerve development) bearing significant signatures of interspecies introgression and within-species positive selection. These findings indicate that post-speciation admixture has contributed genetic material that facilitated the adaptive evolution of big cat lineages

    Homologous Recombination under the Single-Molecule Fluorescence Microscope

    Get PDF
    Homologous recombination (HR) is a complex biological process and is central to meiosis and for repair of DNA double-strand breaks. Although the HR process has been the subject of intensive study for more than three decades, the complex protein–protein and protein–DNA interactions during HR present a significant challenge for determining the molecular mechanism(s) of the process. This knowledge gap is largely because of the dynamic interactions between HR proteins and DNA which is difficult to capture by routine biochemical or structural biology methods. In recent years, single-molecule fluorescence microscopy has been a popular method in the field of HR to visualize these complex and dynamic interactions at high spatiotemporal resolution, revealing mechanistic insights of the process. In this review, we describe recent efforts that employ single-molecule fluorescence microscopy to investigate protein–protein and protein–DNA interactions operating on three key DNA-substrates: single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and four-way DNA called Holliday junction (HJ). We also outline the technological advances and several key insights revealed by these studies in terms of protein assembly on these DNA substrates and highlight the foreseeable promise of single-molecule fluorescence microscopy in advancing our understanding of homologous recombination

    Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

    Get PDF
    How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin’s finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment
    • …
    corecore