18,703 research outputs found

    DNA Codes Based on Stem Similarities Between DNA Sequences

    Get PDF
    DNA codes consisting of DNA sequences are necessary for DNA computing. The minimum distance parameter of such codes is a measure of how dissimilar the codewords are, and thus is indirectly a measure of the likelihood of undetectedable or uncorrectable errors occurring during hybridization. To compute distance, an abstract metric, for example, longest common subsequence, must be used to model the actual bonding energies of DNA strands. In this paper we continue the development [1,2,3] of similarity functions for q-ary n-sequences The theoretical lower bound on the maximal possible size of codes, built on the space endowed with this metric, is obtained. that can be used (for q = 4) to model a thermodynamic similarity on DNA sequences. We introduce the concept of a stem similarity function and discuss DNA codes [2] based on the stem similarity. We suggest an optimal construction [2] and obtain random coding bounds on the maximum size and rate for such codes

    Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand

    Get PDF
    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction–denaturing gradient gel electrophoresis. The bacterial communities’ richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community

    The early expansion and evolutionary dynamics of POU class genes.

    Get PDF
    The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency

    Trisomy 21 alters DNA methylation in parent-of-origin-dependent and independent manners

    Get PDF
    The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondis-joined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5(m)CpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5(m)CpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5(m)CpG imprints at the WRB DMR are uncoupled from the parental allele expression of WRB and ten neighboring genes in several tissues and that trisomy 21 alters DNA methylation in parent-of-origin-dependent and -independent manners

    Transcriptional Regulation: a Genomic Overview

    Get PDF
    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription

    Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types.

    Get PDF
    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified

    Global DNA hypomethylation prevents consolidation of differentiation programs and allows reversion to the embryonic stem cell state.

    Get PDF
    DNA methylation patterns change dynamically during mammalian development and lineage specification, yet scarce information is available about how DNA methylation affects gene expression profiles upon differentiation. Here we determine genome-wide transcription profiles during undirected differentiation of severely hypomethylated (Dnmt1⁻/⁻) embryonic stem cells (ESCs) as well as ESCs completely devoid of DNA methylation (Dnmt1⁻/⁻;Dnmt3a⁻/⁻;Dnmt3b⁻/⁻ or TKO) and assay their potential to transit in and out of the ESC state. We find that the expression of only few genes mainly associated with germ line function and the X chromosome is affected in undifferentiated TKO ESCs. Upon initial differentiation as embryoid bodies (EBs) wild type, Dnmt1⁻/⁻ and TKO cells downregulate pluripotency associated genes and upregulate lineage specific genes, but their transcription profiles progressively diverge upon prolonged EB culture. While Oct4 protein levels are completely and homogeneously suppressed, transcription of Oct4 and Nanog is not completely silenced even at late stages in both Dnmt1⁻/⁻ and TKO EBs. Despite late wild type and Dnmt1⁻/⁻ EBs showing a much higher degree of concordant expression, after EB dissociation and replating under pluripotency promoting conditions both Dnmt1⁻/⁻ and TKO cells, but not wild type cells rapidly revert to expression profiles typical of undifferentiated ESCs. Thus, while DNA methylation seems not to be critical for initial activation of differentiation programs, it is crucial for permanent restriction of developmental fate during differentiation
    corecore