111,351 research outputs found

    Detection of virus mRNA within infected host cells using an isothermal nucleic acid amplification assay: marine cyanophage gene expression within Synechococcus sp

    Get PDF
    Abstract Background Signal-Mediated Amplification of RNA Technology (SMART) is an isothermal nucleic acid amplification technology, developed for the detection of specific target sequences, either RNA (for expression) or DNA. Cyanophages are viruses that infect cyanobacteria. Marine cyanophages are ubiquitous in the surface layers of the ocean where they infect members of the globally important genus Synechococcus. Results Here we report that the SMART assay allowed us to differentiate between infected and non-infected host cultures. Expression of the cyanophage strain S-PM2 portal vertex gene (g20) was detected from infected host Synechococcus sp. WH7803 cells. Using the SMART assay, we demonstrated that g20 mRNA peaked 240 – 360 minutes post-infection, allowing us to characterise this as a mid to late transcript. g20 DNA was also detected, peaking 10 hours post-infection, coinciding with the onset of host lysis. Conclusion The SMART assay is based on isothermal nucleic acid amplification, allowing the detection of specific sequences of DNA or RNA. It was shown to be suitable for differentiating between virus-infected and non-infected host cultures and for the detection of virus gene expression: the first reported use of this technology for such applications.</p

    Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers

    Get PDF
    In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb-1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria

    Labeling of Unique Sequences in Double-Stranded DNA at Sites of Vicinal Nicks Generated by Nicking Endonucleases

    Get PDF
    We describe a new approach for labeling of unique sequences within dsDNA under nondenaturing conditions. The method is based on the site-specific formation of vicinal nicks, which are created by nicking endonucleases (NEases) at specified DNA sites on the same strand within dsDNA. The oligomeric segment flanked by both nicks is then substituted, in a strand displacement reaction, by an oligonucleotide probe that becomes covalently attached to the target site upon subsequent ligation. Monitoring probe hybridization and ligation reactions by electrophoretic mobility retardation assay, we show that selected target sites can be quantitatively labeled with excellent sequence specificity. In these experiments, predominantly probes carrying a target-independent 3′ terminal sequence were employed. At target labeling, thus a branched DNA structure known as 3′-flap DNA is obtained. The single-stranded terminus in 3′-flap DNA is then utilized to prime the replication of an externally supplied ssDNA circle in a rolling circle amplification (RCA) reaction. In model experiments with samples comprised of genomic λ-DNA and human herpes virus 6 type B (HHV-6B) DNA, we have used our labeling method in combination with surface RCA as reporter system to achieve both high sequence specificity of dsDNA targeting and high sensitivity of detection. The method can find applications in sensitive and specific detection of viral duplex DNA.Wallace A. Coulter Foundatio

    A novel cassette method for probe evaluation in the designed biochips

    Get PDF
    A critical step in biochip design is the selection of probes with identical hybridisation characteristics. In this article we describe a novel method for evaluating DNA hybridisation probes, allowing the fine-tuning of biochips, that uses cassettes with multiple probes. Each cassette contains probes in equimolar proportions so that their hybridisation performance can be assessed in a single reaction. The model used to demonstrate this method was a series of probes developed to detect TORCH pathogens. DNA probes were designed for Toxoplasma gondii, Chlamidia trachomatis, Rubella, Cytomegalovirus, and Herpes virus and these were used to construct the DNA cassettes. Five cassettes were constructed to detect TORCH pathogens using a variety of genes coding for membrane proteins, viral matrix protein, an early expressed viral protein, viral DNA polymerase and the repetitive gene B1 of Toxoplasma gondii. All of these probes, except that for the B1 gene, exhibited similar profiles under the same hybridisation conditions. The failure of the B1 gene probe to hybridise was not due to a position effect, and this indicated that the probe was unsuitable for inclusion in the biochip. The redesigned probe for the B1 gene exhibited identical hybridisation properties to the other probes, suitable for inclusion in a biochip

    The examination of baseline noise and the impact on the interpretation of low-template DNA samples

    Full text link
    It is common practice for DNA STR profiles to be analyzed using an analytical threshold (AT), but as more low template DNA (LT-DNA) samples are tested it has become evident that these thresholds do not adequately separate signal from noise. In order to confidently examine LT-DNA samples, the behavior and characteristics of the background noise of STR profiles must be better understood. Thus, the background noise of single source LT-DNA STR profiles were examined to characterize the noise distribution and determine how it changes with DNA template mass and injection time. Current noise models typically assume the noise is independent of fragment size but, given the tendency of the baseline noise to increase with template amount, it is important to establish whether the baseline noise is randomly found throughout the capillary electrophoresis (CE) run or whether it is situated in specific regions of the electropherogram. While it has been shown that the baseline noise of negative samples does not behave similarly to the baseline noise of profiles generated using optimal levels of DNA, the ATs determined using negative samples have shown to be similar to those developed with near-zero, low template mass samples. The distinction between low-template samples, where the noise is consistent regardless of target mass, and standard samples could be made at approximately 0.063 ng for samples amplified using the Identifiler^TM Plus amplification kit (29 cycle protocol), and injected for 5 and 10 seconds. At amplification target masses greater than 0.063 ng, the average noise peak height increased and began to plateau between 0.5 and 1.0 ng for samples injected for 5 and 10 seconds. To examine the time dependent nature of the baseline noise, the baselines of over 400 profiles were combined onto one axis for each target mass and each injection time. Areas of reproducibly higher noise peak heights were identified as areas of potential non-specific amplified product. When the samples were injected for five seconds, the baseline noise did not appear to be time dependent. However, when the samples were injected for either 10 or 20 seconds, there were three areas that exhibited an increase in noise; these areas were identified at 118 bases in green, 231 bases in yellow, and 106 bases in red. If a probabilistic analysis or AT is to be employed for DNA interpretation, consideration must be given as to how the validation or calibration samples are prepared. Ideally the validation data should include all the variation seen within typical samples. To this end, a study was performed to examine possible sources of variation in the baseline noise within the electropherogram. Specifically, three samples were prepared at seven target masses using four different kit lots, four capillary lots, in four amplification batches or four injection batches. The distribution of the noise peak heights in the blue and green channels for samples with variable capillary lots, amplifications, and injections were similar, but the distribution of the noise heights for samples with variable kit lots was shifted. This shift in the distribution of the samples with variable kit lots was due to the average peak height of the individual kit lots varying by approximately two. The yellow and red channels showed a general agreement between the distributions of the samples run with variable kit lots, amplifications, and injections, but the samples run with various capillary lots had a distribution shifted to the left. When the distribution of the noise height for each capillary was examined, the average peak height variation was less than two RFU between capillary lots. Use of a probabilistic method requires an accurate description of the distribution of the baseline noise. Three distributions were tested: Gaussian, log-normal, and Poisson. The Poisson distribution did not approximate the noise distributions well. The log-normal distribution was a better approximation than the Gaussian resulting in a smaller sum of the residuals squared. It was also shown that the distributions impacted the probability that a peak was noise; though how significant of an impact this difference makes on the final probability of an entire STR profile was not determined and may be of interest for future studies

    Capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients

    Get PDF
    We demonstrate a multiplexed loop mediated isothermal amplification (LAMP) assay for infectious disease diagnostics, where the analytical process flow of target pathogens genomic DNA is performed manually by moving magnetic beads through a series of plugs in a capillary. Heat is provided by a water bath and the results read by the naked eye, enabling applications in low resource settings

    Bioelectronic DNA detection of human papillomaviruses using eSensor™: a model system for detection of multiple pathogens

    Get PDF
    BACKGROUND: We used human papillomaviruses (HPV) as a model system to evaluate the utility of a nucleic acid, hybridization-based bioelectronic DNA detection platform (eSensor™) in identifying multiple pathogens. METHODS: Two chips were spotted with capture probes consisting of DNA oligonucleotide sequences specific for HPV types. Electrically conductive signal probes were synthesized to be complementary to a distinct region of the amplified HPV target DNA. A portion of the HPV L1 region that was amplified by using consensus primers served as target DNA. The amplified target was mixed with a cocktail of signal probes and added to a cartridge containing a DNA chip to allow for hybridization with complementary capture probes. RESULTS: Two bioelectric chips were designed and successfully detected 86% of the HPV types contained in clinical samples. CONCLUSIONS: This model system demonstrates the potential of the eSensor platform for rapid and integrated detection of multiple pathogens

    Chimerization of antibodies by isolation of rearranged genomic variable regions by the polymerase chain reaction

    Get PDF
    We describe a new method for amplification, by polymerase chain reaction (PCR), of rearranged segments encoding the variable part of light and heavy chains of an antibody (Ab) from the chromosomal DNA of hybridoma cells for the chimerization ofAbs. A fundamental prerequisite for this is the knowledge ofthe exact sequences in the 5’-untranslated region of light and heavy chain mRNA, and of the joining segment used for rearrangement. This allows the design of nondegenerated oligodeoxyribonucleotides for PCR. The primer design permits directional cloning of the amplified, promoterless fragments into cassette vectors, in which they will be linked to the appropriate human constant domains and immunoglobulin (Ig) promoter/enhancer elements. The method is illustrated for chimerization of an Ab directed against the human T-lymphocyte antigen, CD4. The chimerized Ab is secreted in abundant quantities after transfection of the engineered plasmids into non-Ig-producing myeloma cells