5,499 research outputs found

    The cohesin ring concatenates sister DNA molecules

    Get PDF
    Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin whose Scc1, Smc1, and Smc3 subunits form a tripartite ring structure. It has been proposed that cohesin holds sister DNAs together by trapping them inside its ring. To test this, we used site-specific cross-linking to create chemical connections at the three interfaces between the ring’s three constituent polypeptides, thereby creating covalently closed cohesin rings. As predicted by the ring entrapment model, this procedure produces dimeric DNA/cohesin structures that are resistant to protein denaturation. We conclude that cohesin rings concatenate individual sister minichromosome DNAs

    The DNA damage checkpoint pathway promotes extensive resection and nucleotide synthesis to facilitate homologous recombination repair and genome stability in fission yeast.

    Get PDF
    DNA double-strand breaks (DSBs) can cause chromosomal rearrangements and extensive loss of heterozygosity (LOH), hallmarks of cancer cells. Yet, how such events are normally suppressed is unclear. Here we identify roles for the DNA damage checkpoint pathway in facilitating homologous recombination (HR) repair and suppressing extensive LOH and chromosomal rearrangements in response to a DSB. Accordingly, deletion of Rad3(ATR), Rad26ATRIP, Crb2(53BP1) or Cdc25 overexpression leads to reduced HR and increased break-induced chromosome loss and rearrangements. We find the DNA damage checkpoint pathway facilitates HR, in part, by promoting break-induced Cdt2-dependent nucleotide synthesis. We also identify additional roles for Rad17, the 9-1-1 complex and Chk1 activation in facilitating break-induced extensive resection and chromosome loss, thereby suppressing extensive LOH. Loss of Rad17 or the 9-1-1 complex results in a striking increase in break-induced isochromosome formation and very low levels of chromosome loss, suggesting the 9-1-1 complex acts as a nuclease processivity factor to facilitate extensive resection. Further, our data suggest redundant roles for Rad3ATR and Exo1 in facilitating extensive resection. We propose that the DNA damage checkpoint pathway coordinates resection and nucleotide synthesis, thereby promoting efficient HR repair and genome stability

    Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage

    Get PDF
    The rad2 mutant of Schizosaccharomyces pombe is sensitive to UV irradiation and deficient in the repair of UV damage. In addition, it has a very high degree of chromosome loss and/or nondisjunction. We have cloned the rad2 gene and have shown it to be a member of the Saccharomyces cerevisiae RAD2/S. pombe rad13/human XPG family. Using degenerate PCR, we have cloned the human homolog of the rad2 gene. Human cDNA has 55% amino acid sequence identity to the rad2 gene and is able to complement the UV sensitivity of the rad2 null mutant. We have thus isolated a novel human gene which is likely to be involved both in controlling the fidelity of chromosome segregation and in the repair of UV-induced DNA damage. Its involvement in two fundamental processes for maintaining chromosomal integrity suggests that it is likely to be an important component of cancer avoidance mechanisms

    The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state

    Get PDF
    Indexación: Web of ScienceWith about 350 million people chronically infected around the world hepatitis B is a major health problem. Template for progeny HBV synthesis is the viral genome, organized as a minichromosome (cccDNA) inside the hepatocyte nucleus. How viral cccDNA gene expression is regulated by its chromatin structure; more importantly, how the modulation of this structure impacts on viral gene expression remains elusive. Here, we found that the enzyme SetDB1 contributes to setting up a repressed cccDNA chromatin state. This repressive state is activated by the histone lysine demethylase-1 (LSD1). Consistently, inhibiting or reducing LSD1 levels led to repression of viral gene expression. This correlates with the transcriptionally repressive mark H3K9 methylation and reduction on the activating marks H3 acetylation and H3K4 methylation on viral promoters. Investigating the importance of viral proteins we found that LSD1 recruitment to viral promoters was dependent on the viral transactivator protein HBx. Moreover, the histone methyltransferase Set1A and HBx are simultaneously bound to the core promoter, and Set1A expression correlates with cccDNA H3K4 methylation. Our results shed light on the mechanisms of HBV regulation mediated by the cccDNA chromatin structure, offering new therapeutic targets to develop drugs for the treatment of chronically infected HBV patients.http://www.nature.com/articles/srep2590

    Cloning and characterisation of the Schizosaccharomyces pombe rad32 gene: A gene required for repair of double strand break and recombination

    Get PDF
    A new Schizosaccharomyces pombe mutant (rad32) which is sensitive to gamma and UV irradiation is described. Pulsed field gel electrophoresis of DNA from irradiated cells indicates that the rad32 mutant, in comparison to wild type cells, has decreased ability to repair DNA double strand breaks. The mutant also undergoes decreased meiotic recombination and displays reduced stability of minichromosomes. The rad32 gene has been cloned by complementation of the UV sensitive phenotype. The gene, which is not essential for cell viability and is expressed at a moderate level in mitotically dividing cells, has significant homology to the meiotic recombination gene MRE11 of Saccharomyces cerevisiae. Epistasis analysis indicates that rad32 functions in a pathway which includes the rhp51 gene (the S. pombe homologue to S. cerevisiae RAD51) and that cells deleted for the rad32 gene in conjunction with either the rad3 deletion (a G2 checkpoint mutation) or the rad2 deletion (a chromosome stability and potential nucleotide excision repair mutation) are not viable

    Influence of nucleosome structure on the three-dimensional folding of idealized minichromosomes

    Get PDF
    AbstractBackground: The closed circular, multinucleosome-bound DNA comprising a minichromosome provides one of the best known examples of chromatin organization beyond the wrapping of the double helix around the core of histone proteins. This higher level of chain folding is governed by the topology of the constituent nucleosomes and the spatial disposition of the intervening protein-free DNA linkers.Results: By simplifying the protein–DNA assembly to an alternating sequence of virtual bonds, the organization of a string of nucleosomes on the minichromosome can be treated by analogy to conventional chemical depictions of macromolecular folding in terms of the bond lengths, valence angles, and torsions of the chain. If the nucleosomes are evenly spaced and the linkers are sufficiently short, regular minichromosome structures can be identified from analytical expressions that relate the lengths and angles formed by the virtual bonds spanning the nucleosome-linker repeating units to the pitch and radius of the organized quaternary structures that they produce.Conclusions: The resulting models with 4–24 bound nucleosomes illustrate how a minichromosome can adopt the low-writhe folding motifs deduced from biochemical studies, and account for published images of the 30 nm chromatin fiber and the simian virus 40 (SV40) nucleohistone core. The marked sensitivity of global folding to the degree of protein–DNA interactions and the assumed nucleosomal shape suggest potential mechanisms for chromosome rearrangements upon histone modification
    corecore