19 research outputs found

    A Comparison of Approaches for Visualizing Blockchains and Smart Contracts

    Get PDF
    The use of blockchains and smart contracts is currently explored in various fields of science and engineering due to their potential of radically changing the ways of doing business and the assumed elimination of traditional legal entities. Thereby, the complexity of the underlying technical relationships and mechanisms typically hampers the understanding by non-technical experts. In this paper we review approaches for visualizing blockchains and smart contracts. The investigation focuses on design and analysis approaches, concluding with requirements for a visual modelling language

    Applications of Blockchain in Business Processes: A Comprehensive Review

    Get PDF
    Blockchain (BC), as an emerging technology, is revolutionizing Business Process Management (BPM) in multiple ways. The main adoption is to serve as a trusted infrastructure to guarantee the trust of collaborations among multiple partners in trustless environments. Especially, BC enables trust of information by using Distributed Ledger Technology (DLT). With the power of smart contracts, BC enforces the obligations of counterparties that transact in a business process (BP) by programming the contracts as transactions. This paper aims to study the state-of-the-art of BC technologies by (1) exploring its applications in BPM with the focus on how BC provides the trust of BPs in their lifecycles; (2) identifying the relations of BPM as the need and BC as the solution with the assessment towards BPM characteristics; (3) discussing the up-to-date progresses of critical BC in BPM; (4) identifying the challenges and research directions for future advancement in the domain. The main conclusions of our comprehensive review are (1) the study of adopting BC in BPM has attracted a great deal of attention that has been evidenced by a rapidly growing number of relevant articles. (2) The paradigms of BPM over Internet of Things (IoT) have been shifted from persistent to transient, from static to dynamic, and from centralized to decentralized, and new enabling technologies are highly demanded to fulfill some emerging functional requirements (FRs) at the stages of design, configuration, diagnosis, and evaluation of BPs in their lifecycles. (3) BC has been intensively studied and proven as a promising solution to assure the trustiness for both of business processes and their executions in decentralized BPM. (4) Most of the reported BC applications are at their primary stages, future research efforts are needed to meet the technical challenges involved in interoperation, determination of trusted entities, confirmation of time-sensitive execution, and support of irreversibility

    Smart Contracts for Sustainable Supply Chain Management: Conceptual Frameworks for Supply Chain Maturity Evaluation and Smart Contract Sustainability Assessment

    Get PDF
    Current research on smart contracts focuses on technical, conceptual, and legal aspects but neglects organizational requirements and sustainability impacts. We consider this a significant research gap and explore the relationship between smart contracts and sustainability in supply chains. First, we define the concept of smart contracts in terms of supply chain management. Then, we conduct a content analysis of the literature to explore the overlapping research fields of smart contracts and sustainability in supply chains. Next, we develop a semi-structured assessment framework to model the potential environmental and social impacts induced by smart contracts on supply chains. We propose a conceptual framework for supply chain maturity by mapping the relationships between organizational development, sustainability, and technology. We identify smart contracts as a foundational technology that enables efficient and transparent governance and collaborative self-coordination of human and non-human actors. Thus, we argue that smart contracts can contribute to the economic and social development of networked value chains and Society 5.0. To stimulate interdisciplinary research on smart contracts, we conclude the article by formulating research propositions and trade-offs for smart contracts in the context of technology development, business process and supply chain management, and sustainability

    Application of Business Process Modelling and Blockchain Technology for Financial Cloud

    Get PDF
    Digital economy, digital currencies, and advancement in information technology have contributed to tremendous growth in the global economy and financialisation. In order to have contributed sustain this growth, a systematic approach is necessary for all aspects of the financial process and applications. To a certain extent, it has also created problems in social and economic instability. In order to minimize damaging impacts caused by the lack of regulatory compliance, governance, ethical responsibilities and trust, we have been applying rigorous business requirements analysis framework known as Business Integrity Modelling and Analysis (BIMA) and detailed Business Process Modelling and Simulation (BPMN) techniques to unify business integrity with business performance using by intelligent big data predictive analytics and business intelligence. This talk will provide an application of BPMN for financial application as a Service and will also provide an overview of blockchain technology adoption for the financial cloud

    Designing secure business processes for blockchains with SecBPMN2BC

    Get PDF
    Collaborative business processes can be seen as smart contracts, as they are oftentimes adopted to express agreements among different organizations. Indeed, they provide mechanisms to formalize the obligations of each involved party. For instance, collaborative business processes can specify when a certain task should be executed, under which conditions a service should be offered to the other participants, and how physical objects and information should be manipulated. In this setting, to prevent misuse of smart contracts and services and information provided, it is paramount to guarantee by design that security requirements are fulfilled. With the rise in popularity of blockchains, several approaches exploiting the trusted smart contract execution environment offered by this technology to enforce collaborative business processes have been proposed. Yet, the complexity of business processes, security requirements, and blockchain applications calls for an engineering approach that guides the design of secure business processes. Such an approach should both take advantage of the possibilities offered by blockchain technology to enforce some security requirements (e.g., non-repudiation), and take into account the limitations blockchain poses for other security requirements (e.g., confidentiality). However, we are not aware of any existing work that aims at addressing such issues following a similar approach. In this article, we propose SecBPMN2BC: a model-driven approach to designing business processes with security requirements that are meant to be deployed on blockchains. SecBPMN2BC consists of: (i) an extension of BPMN 2.0 that allows designing secure smart contracts; (ii) a set of algorithms and their implementation that check incompatible security requirements and help the design of smart contracts; (iii) a workflow that guides the application of the method. The method has been validated with a survey conducted on security and BPMN experts

    Koostööäriprotsesside läbiviimine plokiahelal: süsteem

    Get PDF
    Tänapäeval peavad organisatsioonid tegema omavahel koostööd, et kasutada ära üksteise täiendavaid võimekusi ning seeläbi pakkuda oma klientidele parimaid tooteid ja teenuseid. Selleks peavad organisatsioonid juhtima äriprotsesse, mis ületavad nende organisatsioonilisi piire. Selliseid protsesse nimetatakse koostööäriprotsessideks. Üks peamisi takistusi koostööäriprotsesside elluviimisel on osapooltevahelise usalduse puudumine. Plokiahel loob detsentraliseeritud pearaamatu, mida ei saa võltsida ning mis toetab nutikate lepingute täitmist. Nii on võimalik teha koostööd ebausaldusväärsete osapoolte vahel ilma kesksele asutusele tuginemata. Paraku on aga äriprotsesside läbiviimine selliseid madala taseme plokiahela elemente kasutades tülikas, veaohtlik ja erioskusi nõudev. Seevastu juba väljakujunenud äriprotsesside juhtimissüsteemid (Business Process Management System – BPMS) pakuvad käepäraseid abstraheeringuid protsessidele orienteeritud rakenduste kiireks arendamiseks. Käesolev doktoritöö käsitleb koostööäriprotsesside automatiseeritud läbiviimist plokiahela tehnoloogiat kasutades, kombineerides traditsioonliste BPMS- ide arendusvõimalused plokiahelast tuleneva suurendatud usaldusega. Samuti käsitleb antud doktoritöö küsimust, kuidas pakkuda tuge olukordades, milles uued osapooled võivad jooksvalt protsessiga liituda, mistõttu on vajalik tagada paindlikkus äriprotsessi marsruutimisloogika muutmise osas. Doktoritöö uurib tarkvaraarhitektuurilisi lähenemisviise ja modelleerimise kontseptsioone, pakkudes välja disainipõhimõtteid ja nõudeid, mida rakendatakse uudsel plokiahela baasil loodud äriprotsessi juhtimissüsteemil CATERPILLAR. CATERPILLAR-i süsteem toetab kahte lähenemist plokiahelal põhinevate protsesside rakendamiseks, läbiviimiseks ja seireks: kompileeritud ja tõlgendatatud. Samuti toetab see kahte kontrollitud paindlikkuse mehhanismi, mille abil saavad protsessis osalejad ühiselt otsustada, kuidas protsessi selle täitmise ajal uuendada ning anda ja eemaldada osaliste juurdepääsuõigusi.Nowadays, organizations are pressed to collaborate in order to take advantage of their complementary capabilities and to provide best-of-breed products and services to their customers. To do so, organizations need to manage business processes that span beyond their organizational boundaries. Such processes are called collaborative business processes. One of the main roadblocks to implementing collaborative business processes is the lack of trust between the participants. Blockchain provides a decentralized ledger that cannot be tamper with, that supports the execution of programs called smart contracts. These features allow executing collaborative processes between untrusted parties and without relying on a central authority. However, implementing collaborative business processes in blockchain can be cumbersome, error-prone and requires specialized skills. In contrast, established Business Process Management Systems (BPMSs) provide convenient abstractions for rapid development of process-oriented applications. This thesis addresses the problem of automating the execution of collaborative business processes on top of blockchain technology in a way that takes advantage of the trust-enhancing capabilities of this technology while offering the development convenience of traditional BPMSs. The thesis also addresses the question of how to support scenarios in which new parties may be onboarded at runtime, and in which parties need to have the flexibility to change the default routing logic of the business process. We explore architectural approaches and modelling concepts, formulating design principles and requirements that are implemented in a novel blockchain-based BPMS named CATERPILLAR. The CATERPILLAR system supports two methods to implement, execute and monitor blockchain-based processes: compiled and interpreted. It also supports two mechanisms for controlled flexibility; i.e., participants can collectively decide on updating the process during its execution as well as granting and revoking access to parties.https://www.ester.ee/record=b536494

    An overview of VANET vehicular networks

    Full text link
    Today, with the development of intercity and metropolitan roadways and with various cars moving in various directions, there is a greater need than ever for a network to coordinate commutes. Nowadays, people spend a lot of time in their vehicles. Smart automobiles have developed to make that time safer, more effective, more fun, pollution-free, and affordable. However, maintaining the optimum use of resources and addressing rising needs continues to be a challenge given the popularity of vehicle users and the growing diversity of requests for various services. As a result, VANET will require modernized working practices in the future. Modern intelligent transportation management and driver assistance systems are created using cutting-edge communication technology. Vehicular Ad-hoc networks promise to increase transportation effectiveness, accident prevention, and pedestrian comfort by allowing automobiles and road infrastructure to communicate entertainment and traffic information. By constructing thorough frameworks, workflow patterns, and update procedures, including block-chain, artificial intelligence, and SDN (Software Defined Networking), this paper addresses VANET-related technologies, future advances, and related challenges. An overview of the VANET upgrade solution is given in this document in order to handle potential future problems

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution
    corecore