236 research outputs found

    Securing Low-Power Blockchain-Enabled IoT Devices Against Energy Depletion Attack

    Get PDF
    Blockchain-enabled Internet of Things (IoT) envisions a world with rapid development and implementations to change our everyday lives based on smart devices. These devices are attached to the internet that can communicate with each other without human interference. A well-known wireless network in blockchain-enabled IoT frameworks is the Low Power and Lossy Network (LLN) that uses a novel protocol known as Routing protocol for low power and lossy networks (RPL) to provide effective and energy-efficient routing. LLNs that run on RPL are inherently prone to multiple Denial of Service (DoS) attacks due to the low cost, shared medium. and resource-constrained nature of blockchain-enabled IoT devices. A Spam DODAG Information Solicitation (DIS) attack is one of the novel attacks that drain the energy source of legitimate nodes and ends up causing the legitimate nodes to suffer from DoS. To address this problem, a mitigation scheme named DIS Spam Attack Mitigation (DISAM) is proposed. The proposed scheme effectively mitigates the effects of the Spam DIS attack on the network’s performance. The experimental results show that DISAM detects and mitigates the attack quickly and efficiently

    Mitigation Mechanisms Against the DAO Attack on the Routing Protocol for Low Power and Lossy Networks (RPL)

    Get PDF
    Destination Advertisement Objects (DAOs) are sent upward by RPL nodes toward the DODAG root, to build the downward routing paths carrying traffic from the root to its associated nodes. This routing mechanism can be exploited by a malicious node periodically transmitting a large volume of DAO messages towards its parent, which in turn will forward such messages to its own parent and so on, until they arrive at the Direction-Oriented Directed Acyclic Graph (DODAG) root. This ultimately results in a negative effect on network performance in terms of energy consumption, latency and reliability. The first objective of this paper is to evaluate the effect of such a DAO attack in the context of an RPL IoT network. In particular, identifying the particular performance metrics and network resources affected most greatly. The second objective is the proposal of mitigating security mechanisms in relation to DAO attacks and to evaluate their effectiveness. The simulation results have shown how the attack can damage the network performance by significantly increasing the DAO overhead and power consumption. It also demonstrated that the DAO attack affect the reliability of the downward traffic under specific conditions. The proposed mechanisms showed a good capacity in restoring the optimal performance of the network by up to 205%, 181%, 87% and 6%, in terms of overhead, latency, power consumption and packet delivery ratio respectively

    Incremental hybrid intrusion detection for 6LoWPAN

    Get PDF
    IPv6 over Low-powered Wireless Personal Area Networks (6LoWPAN) has grown in importance in recent years, with the Routing Protocol for Low Power and Lossy Networks (RPL) emerging as a major enabler. However, RPL can be subject to attack, with severe consequences. Most proposed IDSs have been limited to specific RPL attacks and typically assume a stationary environment. In this article, we propose the first adaptive hybrid IDS to efficiently detect and identify a wide range of RPL attacks (including DIO Suppression, Increase Rank, and Worst Parent attacks, which have been overlooked in the literature) in evolving data environments. We apply our framework to networks under various levels of node mobility and maliciousness. We experiment with several incremental machine learning (ML) approaches and various ‘concept-drift detection’ mechanisms (e.g. ADWIN, DDM, and EDDM) to determine the best underlying settings for the proposed scheme

    Multicast DIS attack mitigation in RPL-based IoT-LLNs

    Get PDF
    The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) was standardised by the IETF ROLL Working Group to address the routing issues in the Internet of Things (IoT) Low-Power and Lossy Networks (LLNs). RPL builds and maintains a Destination Oriented Directed Acyclic Graph (DODAG) topology using pieces of information propagated within the DODAG Information Object (DIO) control message. When a node intends to join the DODAG, it either waits for DIO or sends a DODAG Information Solicitation (DIS) control message Multicast to solicit DIOs from nearby nodes. Nevertheless, sending Multicast DIS messages resets the timer that regulates the transmission rate of DIOs to its minimum value, which leads to the network’s congestion with control messages. Because of the resource-constrained nature of RPL-LLNs, the lack of tamper resistance, and the security gaps of RPL, malicious nodes can exploit the Multicast DIS solicitation mechanism to trigger an RPL-specification-based attack, named DIS attack. The DIS attack can have severe consequences on RPL networks, especially on control packets overhead and power consumption. In this paper, we use the Cooja–Contiki simulator to assess the DIS attack’s effects on both static and dynamic PRL networks. Besides, we propose and implement a novel approach, namely RPL-MRC, to improve the RPL’s resilience against DIS Multicast. RPL-MRC aims to reduce the response to DIS Multicast messages. Simulation results demonstrate how the attack could damage the network performance by significantly increasing the control packets overhead and power consumption. On the other hand, the RPL-MRC proposed mechanism shows a significant enhancement in reducing the control overhead and power consumption for different scenarios

    On reliable and secure RPL (routing protocol low-power and lossy networks) based monitoring and surveillance in oil and gas fields

    Get PDF
    Different efforts have been made to specify protocols and algorithms for the successful operation of the Internet of things Networks including, for instance, the Low Power and Lossy Networks (LLNs) and Linear Sensor Networks (LSNs). Into such efforts, IETF, the Internet Engineering Task Force, created a working group named, ROLL, to investigate the requirement of such networks and devising more efficient solutions. The effort of this group has resulted in the specification of the IPv6 Routing Protocol for LLNs (RPL), which was standardized in 2012. However, since the introduction of RPL, several studies have reported that it suffers from various limitations and weaknesses including scalability, slow convergence, unfairness of load distribution, inefficiency of bidirectional communication and security, among many others. For instance, a serious problem is RPL’s under-specification of DAO messages which may result in conflict and inefficient implementations leading to a poor performance and scalability issues. Furthermore, RPL has been found to suffer from several security issues including, for instance, the DAO flooding attack, in which the attacker floods the network with control messages aiming to exhaust network resources. Another fundamental issue is related to the scarcity of the studies that investigate RPL suitability for Linear Sensor Networks (LSN) and devising solution in the lieu of that.Motivated by these observations, the publications within this thesis aim to tackle some of the key gaps of the RPL by introducing more efficient and secure routing solutions in consideration of the specific requirements of LLNs in general and LSNs as a special case. To this end, the first publication proposes an enhanced version of RPL called Enhanced-RPL aimed at mitigating the memory overflow and the under-specification of the of DAOs messages. Enhanced-RPL has shown significant reduction in control messages overhead by up to 64% while maintaining comparable reliability to RPL. The second publication introduces a new technique to address the DAO attack of RPL which has been shown to be effective in mitigating the attack reducing the DAO overhead and latency by up to 205% and 181% respectively as well as increasing the PDR by up to 6% latency. The third and fourth publications focus on analysing the optimal placement of nodes and sink movement pattern (fixed or mobile) that RPL should adopt in LSNs. It was concluded based on the results obtained that RPL should opt for fixed sinks with 10 m distance between deployed nodes

    Efficient Routing Primitives for Low-power and Lossy Networks in Internet of Things

    Get PDF
    At the heart of the Internet of Things (IoTs) are the Low-power and Lossy networks (LLNs), a collection of interconnected battery-operated and resource-constrained tiny devices that enable the realization of a wide range of applications in multiple domains. For an efficient operation, such networks require the design of efficient protocols especially at the network layer of their communication stack. In this regards, the Routing Protocol for LLNs (RPL) has been developed and standardised by the IETF to fulfil the routing requirements in such networks. Proven efficient in tackling some major issues, RPL is still far from being optimal in addressing several other routing gaps in the context of LLNs. For instance, the RPL standard lacks in a scalable routing mechanism in the applications that require bidirectional communication. In addition, its routing maintenance mechanism suffers from relatively slow convergence time, limiting the applicability of the protocol in time-critical applications, and a high risk of incorrect configurations of its parameters, risking the creation of sub-optimal routes. Furthermore, RPL lacks in a fair load-distribution mechanism which may harm both energy and reliability of its networks. Motivated by the above-mentioned issues, this thesis aimed at overcoming the RPL’s weaknesses by developing more efficient routing solutions, paving the way towards successful deployments and operations of the LLNs at different scales. Hence, to tackle the inefficiency of RPL’s routing maintenance operations, a new routing maintenance algorithm, namely, Drizzle, has been developed characterized by an adaptive, robust and configurable nature that boosts the applicability of RPL in several applications. To address the scalability problem, a new downward routing solution has been developed rendering RPL more efficient in large-scale networks. Finally, a load-balancing objective function for RPL has been proposed that enhances both the energy efficiency and reliability of LLNs. The efficiency of the proposed solutions has been validated through extensive simulation experiments under different scenarios and operation conditions demonstrating significant performance enhancements in terms of convergence time, scalability, reliability, and power consumption

    Adaptive Energy Saving and Mobility Support IPv6 Routing Protocol in Low-Power and Lossy Networks for Internet of Things and Wireless Sensor Networks

    Get PDF
    Internet of Things (IoT) is an interconnection of physical objects that can be controlled, monitored and exchange information from remote locations over the internet while been connected to an Application Programme Interface (API) and sensors. It utilizes low-powered digital radios for communication enabling millions and billions of Low-power and Lossy Network (LLN) devices to communicate efficiently via a predetermined routing protocol. Several research gaps have identified the constraints of standardised versions of IPv6 Routing Protocol for Low Power and Lossy Networks evidently showing its lack of ability to handle the growing application needs and challenges. This research aims to handle routing from a different perspective extending from energy efficiency, to mobility aware and energy scavenging nodes thereby presenting numerous improvements that can suit various network topologies and application needs. Envisioning all the prospects and innovative services associated with the futuristic ubiquitous communication of IoT applications, we propose an adaptive Objective Function for RPL protocol known as Optimum Reliable Objective Function (OR-OF) having a fuzzy combination of five routing metrics which are chosen based on system and application requirements. It is an approach which combines the three proposed implemented Objective Functions within this thesis to enable the OR-OF adapt to different routing requirements for different IoT applications. The three proposed OFs are Energy saving Routing OF, Enhanced Mobility Support Routing OF and Optimized OF for Energy Scavenging nodes. All proposed OFs were designed, implemented, and simulated in COOJA simulator of ContikiOS, and mathematical models were developed to validate simulated results. Performance Evaluation indicated an overall improvement as compared with the standardised versions of RPL protocols and other related research works in terms of network lifetime with an average of 40%, packet delivery ratio of 21%, energy consumption of 82% and End-to-End Delay of 92%
    • …
    corecore