394 research outputs found

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    A Continuous-Time Microsimulation and First Steps Towards a Multi-Level Approach in Demography

    Get PDF
    Microsimulation is a methodology that closely mimics life-course dynamics. In this thesis, we describe the development of the demographic microsimulation with a continuous time scale that we have realized in the context of the project MicMac - Bridging the micro-macro gap in population forecasting. Furthermore, we detail extensions that we have added to the initial version of the MicMac microsimulation.Mikrosimulation ist eine Prognosetechnik, die sich hervorragend eignet, um Bevölkerungsdynamik realitätsnah abzubilden. In dieser Dissertation beschreiben wir die Entwicklung einer demografischen Mikrosimulation, die wir im Rahmen des Projektes MicMac - Bridging the micro-macro gap in population forecasting erstellt haben. Zudem erläutern wir Erweiterungen, die wir an der ursprünglichen MicMac- Mikrosimulation vorgenommen haben

    An Integrated Ecological-Social Simulation Model of Farmer Decisions and Cropping System Performance in the Rolling Pampas (Argentina)

    Get PDF
    Changes in agricultural systems are a multi-causal process involving climate change, globalization and technological change. These complex interactions regulate the landscape transformation process by imposing land use and cover change (LUCC) dynamics. In order to better understand and forecast the LUCC process we developed a spatially explicit agent-based model in the form of a Cellular Automata: the AgroDEVS model. The model was designed to project viable LUCC dynamics along with their associated economic and environmental changes. AgroDEVS is structured with behavioral rules and functions representing a) crop yields, b) weather conditions, c) economic profits, d) farmer preferences, e) adoption of technology levels and f) natural resource consumption based on embodied energy accounting. Using data from a typical location of the Pampa region (Argentina) for the period 1988-2015, simulation exercises showed that economic goals were achieved, on average, each 6 out of 10 years, but environmental thresholds were only achieved in 1.9 out of 10 years. In a set of 50-years simulations, LUCC patterns converge quickly towards the most profitable crop sequences, with no noticeable trade-off between economic and environmental conditions.Fil: Pessah, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Blanco, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentin

    A model-based approach to System of Systems risk management

    Get PDF
    The failure of many System of Systems (SoS) enterprises can be attributed to the inappropriate application of traditional Systems Engineering (SE) processes within the SoS domain, because of the mistaken belief that a SoS can be regarded as a single large, or complex, system. SoS Engineering (SoSE) is a sub-discipline of SE; Risk Management and Modelling and Simulation (M&S) are key areas within SoSE, both of which also lie within the traditional SE domain. Risk Management of SoS requires a different approach to that currently taken for individual systems; if risk is managed for each component system then it cannot be assumed that the aggregated affect will be to mitigate risk at the SoS level. A literature review was undertaken examining three themes: (1) SoS Engineering (SoSE), (2) M&S and (3) Risk. Theme 1 of the literature provided insight into the activities comprising SoSE and its difference from traditional SE with risk management identified as a key activity. The second theme discussed the application of M&S to SoS, providing an output, which supported the identification of appropriate techniques and concluding that, the inherent complexity of a SoS required the use of M&S in order to support SoSE activities. Current risk management approaches were reviewed in theme 3 as well as the management of SoS risk. Although some specific examples of the management of SoS risk were found, no mature, general approach was identified, indicating a gap in current knowledge. However, it was noted most of these examples were underpinned by M&S approaches. It was therefore concluded a general approach SoS risk management utilising M&S methods would be of benefit. In order to fill the gap identified in current knowledge, this research proposed a new model based approach to Risk Management where risk identification was supported by a framework, which combined SoS system of interest dimensions with holistic risk types, where the resulting risks and contributing factors are captured in a causal network. Analysis of the causal network using a model technique selection tool, developed as part of this research, allowed the causal network to be simplified through the replacement of groups of elements within the network by appropriate supporting models. The Bayesian Belief Network (BBN) was identified as a suitable method to represent SoS risk. Supporting models run in Monte Carlo Simulations allowed data to be generated from which the risk BBNs could learn, thereby providing a more quantitative approach to SoS risk management. A method was developed which provided context to the BBN risk output through comparison with worst and best-case risk probabilities. The model based approach to Risk Management was applied to two very different case studies: Close Air Support mission planning and the Wheat Supply Chain, UK National Food Security risks, demonstrating its effectiveness and adaptability. The research established that the SoS SoI is essential for effective SoS risk identification and analysis of risk transfer, effective SoS modelling requires a range of techniques where suitability is determined by the problem context, the responsibility for SoS Risk Management is related to the overall SoS classification and the model based approach to SoS risk management was effective for both application case studies

    Integrating BDI agents with Agent-based simulation platforms

    Get PDF
    Agent-Based Models (ABMs) is increasingly being used for exploring and supporting decision making about social science scenarios involving modelling of human agents. However existing agent-based simulation platforms (e.g., SWARM, Repast) provide limited support for the simulation of more complex cognitive agents required by such scenarios. We present a framework that allows Belief-Desire Intention (BDI) cognitive agents to be embedded in an ABM system. Architecturally, this means that the "brains" of an agent can be modelled in the BDI system in the usual way, while the "body" exists in the ABM system. The architecture is exible in that the ABM can still have non-BDI agents in the simulation, and the BDI-side can have agents that do not have a physical counterpart (such as an organisation). The framework addresses a key integration challenge of coupling event-based BDI systems, with time-stepped ABM systems. Our framework is modular and supports integration off-the-shelf BDI systems with off-the-shelf ABM systems. The framework is Open Source, and all integrations and applications are available for use by the modelling community

    Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems

    Get PDF
    Following the classical work of Norbert Wiener, Ross Ashby, Ludwig von Bertalanffy and many others, the concept of System has been elaborated in different disciplinary fields, allowing interdisciplinary approaches in areas such as Physics, Biology, Chemistry, Cognitive Science, Economics, Engineering, Social Sciences, Mathematics, Medicine, Artificial Intelligence, and Philosophy. The new challenge of Complexity and Emergence has made the concept of System even more relevant to the study of problems with high contextuality. This Special Issue focuses on the nature of new problems arising from the study and modelling of complexity, their eventual common aspects, properties and approaches—already partially considered by different disciplines—as well as focusing on new, possibly unitary, theoretical frameworks. This Special Issue aims to introduce fresh impetus into systems research when the possible detection and correction of mistakes require the development of new knowledge. This book contains contributions presenting new approaches and results, problems and proposals. The context is an interdisciplinary framework dealing, in order, with electronic engineering problems; the problem of the observer; transdisciplinarity; problems of organised complexity; theoretical incompleteness; design of digital systems in a user-centred way; reaction networks as a framework for systems modelling; emergence of a stable system in reaction networks; emergence at the fundamental systems level; behavioural realization of memoryless functions

    A Framework for Group Modeling in Agent-Based Pedestrian Crowd Simulations

    Get PDF
    Pedestrian crowd simulation explores crowd behaviors in virtual environments. It is extensively studied in many areas, such as safety and civil engineering, transportation, social science, entertainment industry and so on. As a common phenomenon in pedestrian crowds, grouping can play important roles in crowd behaviors. To achieve more realistic simulations, it is important to support group modeling in crowd behaviors. Nevertheless, group modeling is still an open and challenging problem. The influence of groups on the dynamics of crowd movement has not been incorporated into most existing crowd models because of the complexity nature of social groups. This research develops a framework for group modeling in agent-based pedestrian crowd simulations. The framework includes multiple layers that support a systematic approach for modeling social groups in pedestrian crowd simulations. These layers include a simulation engine layer that provides efficient simulation engines to simulate the crowd model; a behavior-based agent modeling layers that supports developing agent models using the developed BehaviorSim simulation software; a group modeling layer that provides a well-defined way to model inter-group relationships and intra-group connections among pedestrian agents in a crowd; and finally a context modeling layer that allows users to incorporate various social and psychological models into the study of social groups in pedestrian crowd. Each layer utilizes the layer below it to fulfill its functionality, and together these layers provide an integrated framework for supporting group modeling in pedestrian crowd simulations. To our knowledge this work is the first one to focus on a systematic group modeling approach for pedestrian crowd simulations. This systematic modeling approach allows users to create social group simulation models in a well-defined way for studying the effect of social and psychological factors on crowd’s grouping behavior. To demonstrate the capability of the group modeling framework, we developed an application of dynamic grouping for pedestrian crowd simulations

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference
    corecore