133 research outputs found

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec

    High resolution radargrammetry with COSMO-SkyMed, TerraSAR-X and RADARSAT-2 imagery: development and implementation of an image orientation model for Digital Surface Model generation

    Get PDF
    Digital Surface and Terrain Models (DSM/DTM) have large relevance in several territorial applications, such as topographic mapping, monitoring engineering, geology, security, land planning and management of Earth's resources. The satellite remote sensing data offer the opportunity to have continuous observation of Earth's surface for territorial application, with short acquisition and revisit times. Meeting these requirements, the SAR (Synthetic Aperture Radar) high resolution satellite imagery could offer night-and-day and all-weather functionality (clouds, haze and rain penetration). Two different methods may be used in order to generate DSMs from SAR data: the interferometric and the radargrammetric approaches. The radargrammetry uses only the intensity information of the SAR images and reconstructs the 3D information starting from a couple of images similarly to photogrammetry. Radargrammetric DSM extraction procedure consists of two basic steps: the stereo pair orientation and the image matching for the automatic detection of homologous points. The goal of this work is the definition and the implementation of a geometric model in order to orientate SAR imagery in zero Doppler geometry. The radargrammetric model implemented in SISAR (Software per Immagini Satellitari ad Alta Risoluzione - developed at the Geodesy and Geomatic Division - University of Rome "La Sapienza") is based on the equation of radar target acquisition and zero Doppler focalization Moreover a tool for the SAR Rational Polynomial Coefficients (RPCs) generation has been implemented in SISAR software, similarly to the one already developed for the optical sensors. The possibility to generate SAR RPCs starting from a radargrammetric model sounds of particular interest since, at present, the most part of SAR imagery is not supplied with RPCs, although the RPFs model is available in several commercial software. Only RADARSAT-2 data are supplied with vendors RPCs. To test the effectiveness of the implemented RPCs generation tool and the SISAR radargrammetric orientation model the reference results were computed: the stereo pairs were orientated with the two model. The tests were carried out on several test site using COSMO-SkyMed, TerraSAR-X and RADARSAT-2 data. Moreover, to evaluate the advantages and the different accuracy between the orientation models computed without GCPs and the orientation model with GCPs a Monte Carlo test was computed. At last, to define the real effectiveness of radargrammetric technique for DSM extraction and to compare the radrgrammetric tool implemented in a commercial software PCI-Geomatica v. 2012 and SISAR software, the images acquired on Beauport test site were used for DSM extraction. It is important underline that several test were computed. Part of this tests were carried out under the supervision of Prof. Thierry Toutin at CCRS (Canada Centre of Remote Sensing) where the PCI-Geomatica orientation model was developed, in order to check the better parameters solution to extract radargrammetric DSMs. In conclusion, the results obtained are representative of the geometric potentialities of SAR stereo pairs as regards 3D surface reconstruction

    Extraction of spatial information from sterioscopic SAR images

    Get PDF
    Synthetic Aperture Radar (SAR) is now widely used for generating Digital Elevation Models (DEMs) and has advantages over optical data in terms of availability as it allows all-day and all-weather operations. The stereoscopic SAR method, which allows direct extraction of spatial information in three-dimensional space, has been established for decades. However, the traditional stereoscopic methods developed for SAR data depend on many human operations and need ground control points (GCPs), to set up geometric models. The aims of the thesis are not only to propose a refined rigorous stereoscopic SAR method and a new error model to predict theoretic errors, but also to achieve a higher level of automation and accuracy. By using a weighting matrix, which is derived by considering different observations in the space intersection algorithm, the minimal number of the GCPs required for the refined algorithm is only two. To achieve a high degree of automation, an optimized strategy of parameter selection for the pyramidal image correlation scheme employing a region-growing technique has been proposed. This avoids a trial-and-error approach to produce digital parallax data from the same-side SAR image pairs. A new method to derive GCPs automatically has been developed using a SAR image simulation technique, under the condition that a known DEM chip is available, to minimize human interventions and operator error. The proposed method for providing GCPs and the DEMs generated from space intersection have been incorporated into the procedures for geocoding SAR images to validate the proposed algorithms. The results derived show that the stereoscopic SAR data can be applied to geometric rectification in flat-to-moderate areas, and other applications of extraction of spatial information are promising

    Guidelines for Best Practice and Quality Checking of Ortho Imagery

    Get PDF
    For almost 10 years JRC's ÂżGuidelines for Best Practice and Quality Control of Ortho ImageryÂż has served as a reference document for the production of orthoimagery not only for the purposes of CAP but also for many medium-to-large scale photogrammetric applications. The aim is to provide the European Commission and the remote sensing user community with a general framework of the best approaches for quality checking of orthorectified remotely sensed imagery, and the expected best practice, required to achieve good results. Since the last major revision (2003) the document was regularly updated in order to include state-of-the-art technologies. The major revision of the document was initiated last year in order to consolidate the information that was introduced to the document in the last five years. Following the internal discussion and the outcomes of the meeting with an expert panel it was decided to adopt as possible a process-based structure instead of a more sensor-based used before and also to keep the document as much generic as possible by focusing on the core aspects of the photogrammetric process. Additionally to any structural changes in the document new information was introduced mainly concerned with image resolution and radiometry, digital airborne sensors, data fusion, mosaicking and data compression. The Guidelines of best practice is used as the base for our work on the definition of technical specifications for the orthoimagery. The scope is to establish a core set of measures to ensure sufficient image quality for the purposes of CAP and particularly for the Land Parcel Identification System (PLIS), and also to define the set of metadata necessary for data documentation and overall job tracking.JRC.G.3-Agricultur

    Geocoding and stereoscopy of synthetic aperture radar imagery.

    Get PDF
    This thesis is concerned with the geocoding of Synthetic Aperture Radar (SAR) images and the use of stereo SAR images. The work was carried out as part of the preparation for the launch of the ERS-1 sateffite, due in July 1991, which will carry a SAR sensor. There are two basic approaches to geocoding: image-to-object and object-to-image. Both of these methods have been analysed and assessed on experimental data, namely SIR-B imagery of Mount Shasta. Each type of geocoding requires the solution of nonlinear equations. It has been shown that if the parameters which control the geocoding process are given to a good degree of accuracy, each method can give good results. The effect of inaccuracies in the estimation of these parameters has also been analysed. It was found that there was a predominantly linear response to parameter error in both types of geocoding. Experimental investigations into the effects of the resampling, inherent in operational geocoding, showed that the statistical properties of the resulting image may be severely corrupted with pixel values of less than zero being obtained. This discovery has subsequently been given theoretical support. Height can be determined from stereo pairs of images and digital elevation models can thus be produced, aiding both geocoding and topographic mapping. Existing approaches to SAR/SAR stereo all appear to be based on photograinmetric methods. An alternative, analytic approach, believed to be novel, is described and applied to the same Mount Shasta imagery. Using this method, with accurately-known controlling parameters, correspondence with ground data is excellent. However, an analysis of the sensitivity of the approach to inaccuracies in the controlling parameters shows that the method is extremely sensitive to error. The possibility of combining SAR and optical/infrared imagery for stereometric purposes is also discussed from a theoretical viewpoint

    New techniques for the automatic registration of microwave and optical remotely sensed images

    Get PDF
    Remote sensing is a remarkable tool for monitoring and mapping the land and ocean surfaces of the Earth. Recently, with the launch of many new Earth observation satellites, there has been an increase in the amount of data that is being acquired, and the potential for mapping is greater than ever before. Furthermore, sensors which are currently operational are acquiring data in many different parts of the electromagnetic spectrum. It has long been known that by combining images that have been acquired at different wavelengths, or at different times, the ability to detect and recognise features on the ground is greatly increased. This thesis investigates the possibilities for automatically combining radar and optical remotely sensed images. The process of combining images, known as data integration, is a two step procedure: geometric integration (image registration) and radiometric integration (data fusion). Data fusion is essentially an automatic procedure, but the problems associated with automatic registration of multisource images have not, in general, been resolved. This thesis proposes a method of automatic image registration based on the extraction and matching of common features which are visible in both images. The first stage of the registration procedure uses patches as the matching primitives in order to determine the approximate alignment of the images. The second stage refines the registration results by matching edge features. Throughout the development of the proposed registration algorithm, reliability, robustness and automation were always considered priorities. Tests with both small images (512x512 pixels) and full scene images showed that the algorithm could successfully register images to an acceptable level of accuracy

    Satellite based synthetic aperture radar and optical spatial-temporal information as aid for operational and environmental mine monitoring

    Get PDF
    A sustainable society is a society that satisfies its resource requirements without endangering the sustainability of these resources. The mineral endowment on the African continent is estimated to be the first or second largest of world reserves. Therefore, it is recognised that the African continent still heavily depends on mineral exports as a key contributor to the gross domestic product (GDP) of various countries. These mining activities, however, do introduce primary and secondary environmental degradation factors. They attract communities to these mining areas, light and heavy industrial establishments occur, giving rise to artisanal activities. This study focussed on satellite RS products as an aid to a mine’s operations and the monitoring of its environment. Effective operational mine management and control ensures a more sustainable and profitable lifecycle for mines. Satellite based RS holds the potential to observe the mine and its surrounding areas at high temporal intervals, different spectral wavelengths and spatial resolutions. The combination of SAR and optical information creates a spatial platform to observe and measure the mine’s operations and the behaviour of specific land cover and land use classes over time and contributes to a better understanding of the mining activities and their influence on the environment within a specific geographical area. This study will introduce an integrated methodology to collect, process and analyse spatial information over a specific targeted mine. This methodology utilises a medium resolution land cover base map, derived from Landsat 8, to understand the predominant land cover types of the surrounding area. Using very high resolution mono- and stereoscopic satellite imagery provides a finer scale analysis and identifies changes in features at a smaller scale. Combining these technologies with the synthetic aperture radar (SAR) applications for precise measurement of surface subsidence or upliftment becomes a spatial toolbox for mine management. This study examines a combination of satellite remote sensing products guided by a systematic workflow methodology to integrate spatial results as an aid for mining operations and environmental monitoring. Some of the results that can be highlighted is the successful land cover classification using the Landsat 8 satellite. The land cover that dominated the Kolomela mine area was the “SHRUBLAND/GRASS” class with a 94% coverage and “MINE” class of 2.6%. Sishen mine had a similar dominated land cover characteristic with a “SHRUBLAND/GRASS” class of 90% and “MINE” class of 4.8%. The Pléiades time-series classification analysis was done using three scenes each acquired at a different time interval. The Sishen and Kolomela mine showed especially changes from the bare soil class to the asphalt or mine class. The Pléiades stereoscopic analysis provided volumetric change detection over small, medium, large and recessed areas. Both the Sishen and Kolomela mines demonstrated height profile changes in each selected category. The last category of results focused on the SAR technology to measure within millimetre accuracy the subsidence and upliftment behaviour of surface areas over time. The Royal Bafokeng Platinum tailings pond area was measured using 74 TerraSAR-X scenes. The tailings wall area was confirmed as stable with natural subsidence that occurred in its surrounding area due to seasonal changes of the soil during rainy and dry periods. The Chuquicamata mine as a large open pit copper mine area was analysed using 52 TerraSAR-X scenes. The analysis demonstrated significant vertical surface movement over some of the dumping sites. It is the wish of the researcher that this dissertation and future research scholars will continue to contribute in this scientific field. These contributions can only assist the mining sector to continuously improve its mining operations as well as its monitoring of the primary as well as the secondary environmental impacts to ensure improved sustainability for the next generation.Environmental SciencesM. Sc. (Environmental Science

    Digital Surface Modelling in Developing Countries Using Spaceborne SAR Techniques

    Get PDF
    Topographic databases at the national level, in the form of Digital Surface Models (DSMs), are required for a large number of applications which have been spurred on by the increased use of Geographic Information Systems (GIS). Ground-Based (surveying, GPS, etc.) and traditional airborne approaches to generating topographic information are proving to be time consuming and costly for applications in developing countries. Where these countries are located in the tropical zone, they are affected by the additional problem of cloud cover which could cause delays for almost 75% of the year in obtaining optical imagery. The Caribbean happens to be one such affected territory that is in need of national digital topographic information for its GIS database developments, 3D visualization of landscapes and for use in the digital ortho-rectification of satellite imagery. The use of Synthetic Aperture Radar (SAR), with its cloud penetrating and day/night imaging capabilities, is emerging as a possible remote sensing tool for use in cloud affected territories. There has been success with airborne single-pass dual antennae systems (e.g. STAR 3i) and the Shuttle Radar Topographic Mapping (SRTM) mission. However, the use of these systems in the Caribbean are restrictive and datasets will not be generally available. The launching of imaging radar satellites such as ERS-1, ERS-2, Radarsat-1 and more recently Envisat have provided additional opportunities for augmenting the technologies available for generating medium accuracy, low cost, topographic information for developing countries by using the techniques of Radargrammetry (StereoSAR) and Interferometric SAR (InSAR). The primary aim of this research was to develop, from scratch, a prototype StereoSAR system based on automatic stereo matching and space intersection algorithms to generate medium accuracy, low cost DSMs, using various influencing parameters without any recourse to ground control points. The result was to be a software package to undertake this process for implementation on a personal computer. The DSMs generated from Radarsat-1 and Envisat SAR imagery were compared with a reference surface from airborne InSAR and conclusions with respect to the quality of the StereoSAR DSMs are presented. Work required to further improve the StereoSAR system is also suggested
    • …
    corecore