254 research outputs found

    Dect architecture proposal for a construction site

    Get PDF
    A construction site is an specific environment where important propagation related issues have to be considered. In particular an important problem concerns the coverage of buildings under construction and therefore continuously changing. The deployment of a DECT system in such scenarios can not be carried out as usually, by means of DECT base stations linked by cables. Another specific problem is that no measures can be done prior to decide the best place for the antennas since initially the building does not exist. In this paper a way to solve both problems is proposed through a specific system architecture, a propagation model and a combination of software with a CAD tool.Peer ReviewedPostprint (published version

    Assessment of radio frequency exposures in schools, homes, and public places in Belgium

    Get PDF
    Characterization of exposure from emerging radio frequency (RF) technologies in areas where children are present is important. Exposure to RF electromagnetic fields (EMF) was assessed in three "sensitive" microenvironments; namely, schools, homes, and public places located in urban environments and compared to exposure in offices. In situ assessment was conducted by performing spatial broadband and accurate narrowband measurements, providing 6-min averaged electric-field strengths. A distinction between internal (transmitters that are located indoors) and external (outdoor sources from broadcasting and telecommunication) sources was made. Ninety-four percent of the broadband measurements were below 1 V m(-1). The average and maximal total electric-field values in schools, homes, and public places were 0.2 and 3.2 V m(-1) (WiFi), 0.1 and 1.1 V m(-1) (telecommunication), and 0.6 and 2.4 V m(-1) (telecommunication), respectively, while for offices, average and maximal exposure were 0.9 and 3.3 V m(-1) (telecommunication), satisfying the ICNIRP reference levels. In the schools considered, the highest maximal and average field values were due to internal signals (WiFi). In the homes, public places, and offices considered, the highestmaximal and average field values originated from telecommunication signals. Lowest exposures were obtained in homes. Internal sources contributed on average more indoors (31.2%) than outdoors (2.3%), while the average contributions of external sources (broadcast and telecommunication sources) were higher outdoors (97.7%) than at indoor positions (68.8%). FM, GSM, and UMTS dominate the total downlink exposure in the outdoor measurements. In indoor measurements, FM, GSM, and WiFi dominate the total exposure. The average contribution of the emerging technology LTE was only 0.6%

    Software tool for optimising indoor/outdoor coverage in a construction site

    Get PDF
    A system architecture, an empirical propagation model, and a software combined with a CAD tool, have been designed to offer mobile communication services to construction sites. Results have been validated by measurements.Peer ReviewedPostprint (published version

    Assessment of RF exposures from emerging wireless communication technologies in different environments

    Get PDF
    In situ electromagnetic (EM) radio frequency (RF) exposure to base stations of emerging wireless technologies is assessed at 311 locations, 68 indoor and 243 outdoor, spread over 35 areas in three European countries (Belgium, The Netherlands, and Sweden) by performing narrowband spectrum analyzer measurements. The locations are selected to characterize six different environmental categories (rural, residential, urban, suburban, office, and industrial). The maximal total field value was measured in a residential environment and equal to 3.9 V m(-1), mainly due to GSM900 signals. Exposure ratios for maximal electric field values, with respect to ICNIRP reference levels, range from 0.5% (WiMAX) to 9.3% (GSM900) for the 311 measurement locations. Exposure ratios for total field values vary from 3.1% for rural environments to 9.4% for residential environments. Exposures are lognormally distributed and are the lowest in rural environments and the highest in urban environments. Highest median exposures were obtained in urban environments (0.74 V m(-1)), followed by office (0.51 V m(-1)), industrial (0.49 Vm(-1)), suburban (0.46 Vm(-1)), residential (0.40 Vm(-1)), and rural (0.09 V m(-1)) environments. The average contribution to the total electric field is more than 60% for GSM. Except for the rural environment, average contributions of UMTS-HSPA are more than 3%. Contributions of the emerging technologies LTE and WiMAX are on average less than 1%. The dominating outdoor source is GSM900 (95th percentile of 1.9 V m(-1)), indoor DECT dominates (95th percentile of 1.5 V m(-1)). Health Phys. 102(2): 161-172; 201

    Business models for deployment and operation of femtocell networks; - Are new cooperation strategies needed for mobile operators?

    Get PDF
    In this paper we discuss different business models for deployment and operation of femtocell networks intended for provisioning of public mobile broad band access services. In these types of business cases the operators use femtocells in order to reduce investments in "more costly" macro networks since the traffic can be "offloaded" to "less costly" femtocell networks. This is in contrast to the many business cases presented in Femtoforum where femtocells mainly are discussed as a solution to improve indoor coverage for voice services in homes and small offices, usually for closed user groups The main question discussed in this paper is if "operators need to consider new forms of cooperation strategies in order to enable large scale deployment of femtocells for public access?" By looking into existing solutions for indoor wireless access services we claim that the answer is both "Yes" and "No". No, since many types of cooperation are already in place for indoor deployment. Yes, because mobile operators need to re-think the femtocell specific business models, from approaches based on singe operator networks to different forms of cooperation involving multi-operator solutions, e.g. roaming and network sharing. --

    Network planning for third-generation mobile radio systems

    Get PDF

    Characterisation of spatial and temporal variability of RF-EMF exposure levels in urban environments in Flanders, Belgium

    Get PDF
    Personal exposure to Radio-Frequency Electromagnetic Fields (RF-EMFs) was studied using personal measurements in five different microenvironments in each of five cities (Brussels, Antwerp, Ghent, Bruges and Hasselt) in Flanders, Belgium. These measurements were carried out by two researchers using on-body calibrated personal exposimeters. In three out of the five studied cities (Brussels, Ghent and Bruges), temporal aspects of personal exposure to RF-EMFs were studied as well. Measurements during and outside of rush hours (7:00-9:15 and 16:30-19:00) were compared. Likewise, measurements were executed during night time and compared to the ones measured during working hours. Representativeness and repeatability of the measurement method was studied as well. The highest mean total exposure was found in Brussels (2.63 mW/m(2)), the most densely populated city in this study. However, we measured higher downlink exposure in Antwerp than in Brussels, which might be an effect of the stronger legislation on base stations in Brussels. The measurements and used protocol were found to be both repeatable over time (r = 0.95 for median total exposure) and representative for the studied microenvironments in terms of path selection (r = 0.88 for median total exposure). Finally, in 10 out of the 13 on-body calibrated frequency bands we found that the measurement devices underestimate the intensity of the incident RF-EMFs with median underestimations up to 68%
    • …
    corecore