119 research outputs found

    Multi-Class Classification for Identifying JPEG Steganography Embedding Methods

    Get PDF
    Over 725 steganography tools are available over the Internet, each providing a method for covert transmission of secret messages. This research presents four steganalysis advancements that result in an algorithm that identifies the steganalysis tool used to embed a secret message in a JPEG image file. The algorithm includes feature generation, feature preprocessing, multi-class classification and classifier fusion. The first contribution is a new feature generation method which is based on the decomposition of discrete cosine transform (DCT) coefficients used in the JPEG image encoder. The generated features are better suited to identifying discrepancies in each area of the decomposed DCT coefficients. Second, the classification accuracy is further improved with the development of a feature ranking technique in the preprocessing stage for the kernel Fisher s discriminant (KFD) and support vector machines (SVM) classifiers in the kernel space during the training process. Third, for the KFD and SVM two-class classifiers a classification tree is designed from the kernel space to provide a multi-class classification solution for both methods. Fourth, by analyzing a set of classifiers, signature detectors, and multi-class classification methods a classifier fusion system is developed to increase the detection accuracy of identifying the embedding method used in generating the steganography images. Based on classifying stego images created from research and commercial JPEG steganography techniques, F5, JP Hide, JSteg, Model-based, Model-based Version 1.2, OutGuess, Steganos, StegHide and UTSA embedding methods, the performance of the system shows a statistically significant increase in classification accuracy of 5%. In addition, this system provides a solution for identifying steganographic fingerprints as well as the ability to include future multi-class classification tools

    Steganography and Steganalysis in Digital Multimedia: Hype or Hallelujah?

    Get PDF
    In this tutorial, we introduce the basic theory behind Steganography and Steganalysis, and present some recent algorithms and developments of these fields. We show how the existing techniques used nowadays are related to Image Processing and Computer Vision, point out several trendy applications of Steganography and Steganalysis, and list a few great research opportunities just waiting to be addressed.In this tutorial, we introduce the basic theory behind Steganography and Steganalysis, and present some recent algorithms and developments of these fields. We show how the existing techniques used nowadays are related to Image Processing and Computer Vision, point out several trendy applications of Steganography and Steganalysis, and list a few great research opportunities just waiting to be addressed

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Statistical Tools for Digital Image Forensics

    Get PDF
    A digitally altered image, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic image. The tampering, however, may disturb some underlying statistical properties of the image. Under this assumption, we propose five techniques that quantify and detect statistical perturbations found in different forms of tampered images: (1) re-sampled images (e.g., scaled or rotated); (2) manipulated color filter array interpolated images; (3) double JPEG compressed images; (4) images with duplicated regions; and (5) images with inconsistent noise patterns. These techniques work in the absence of any embedded watermarks or signatures. For each technique we develop the theoretical foundation, show its effectiveness on credible forgeries, and analyze its sensitivity and robustness to simple counter-attacks

    An Analysis of Perturbed Quantization Steganography in the Spatial Domain

    Get PDF
    Steganography is a form of secret communication in which a message is hidden into a harmless cover object, concealing the actual existence of the message. Due to the potential abuse by criminals and terrorists, much research has also gone into the field of steganalysis - the art of detecting and deciphering a hidden message. As many novel steganographic hiding algorithms become publicly known, researchers exploit these methods by finding statistical irregularities between clean digital images and images containing hidden data. This creates an on-going race between the two fields and requires constant countermeasures on the part of steganographers in order to maintain truly covert communication. This research effort extends upon previous work in perturbed quantization (PQ) steganography by examining its applicability to the spatial domain. Several different information-reducing transformations are implemented along with the PQ system to study their effect on the security of the system as well as their effect on the steganographic capacity of the system. Additionally, a new statistical attack is formulated for detecting ± 1 embedding techniques in color images. Results from performing state-of-the-art steganalysis reveal that the system is less detectable than comparable hiding methods. Grayscale images embedded with message payloads of 0.4bpp are detected only 9% more accurately than by random guessing, and color images embedded with payloads of 0.2bpp are successfully detected only 6% more reliably than by random guessing

    Texture classification using discrete Tchebichef moments

    Get PDF
    In this paper, a method to characterize texture images based on discrete Tchebichef moments is presented. A global signature vector is derived from the moment matrix by taking into account both the magnitudes of the moments and their order. The performance of our method in several texture classification problems was compared with that achieved through other standard approaches. These include Haralick's gray-level co-occurrence matrices, Gabor filters, and local binary patterns. An extensive texture classification study was carried out by selecting images with different contents from the Brodatz, Outex, and VisTex databases. The results show that the proposed method is able to capture the essential information about texture, showing comparable or even higher performance than conventional procedures. Thus, it can be considered as an effective and competitive technique for texture characterization. © 2013 Optical Society of America.J. Víctor Marcos is a Juan de la Cierva research fellow funded by the Spanish Ministry of Economy and Competitiveness.Peer Reviewe

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã
    corecore