748 research outputs found

    Perceptual Copyright Protection Using Multiresolution Wavelet-Based Watermarking And Fuzzy Logic

    Full text link
    In this paper, an efficiently DWT-based watermarking technique is proposed to embed signatures in images to attest the owner identification and discourage the unauthorized copying. This paper deals with a fuzzy inference filter to choose the larger entropy of coefficients to embed watermarks. Unlike most previous watermarking frameworks which embedded watermarks in the larger coefficients of inner coarser subbands, the proposed technique is based on utilizing a context model and fuzzy inference filter by embedding watermarks in the larger-entropy coefficients of coarser DWT subbands. The proposed approaches allow us to embed adaptive casting degree of watermarks for transparency and robustness to the general image-processing attacks such as smoothing, sharpening, and JPEG compression. The approach has no need the original host image to extract watermarks. Our schemes have been shown to provide very good results in both image transparency and robustness.Comment: 13 pages, 7 figure

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Hardware Implementation of a Secured Digital Camera with Built In Watermarking and Encryption Facility

    Get PDF
    The objective is to design an efficient hardware implementation of a secure digital camera for real time digital rights management (DRM) in embedded systems incorporating watermarking and encryption. This emerging field addresses issues related to the ownership and intellectual property rights of digital content. A novel invisible watermarking algorithm is proposed which uses median of each image block to calculate the embedding factor. The performance of the proposed algorithm is compared with the earlier proposed permutation and CRT based algorithms. It is seen that the watermark is successfully embedded invisibly without distorting the image and it is more robust to common image processing techniques like JPEG compression, filtering, tampering. The robustness is measured by the different quality assessment metrics- Peak Signal to Noise Ratio (PSNR), Normalized Correlation (NC), and Tampering Assessment Function (TAF). It is simpler to implement in hardware because of its computational simplicity. Advanced Encryption Standard (AES) is applied after quantization for increased security. The corresponding hardware architectures for invisible watermarking and AES encryption are presented and synthesized for Field Programmable Gate Array(FPGA).The soft cores in the form of Hardware Description Language(HDL) are available as intellectual property cores and can be integrated with any multimedia based electronic appliance which are basically embedded systems built using System On Chip (SoC) technology

    Several Kinds of Modified SPIHT Codec

    Get PDF

    A novel steganography approach for audio files

    Get PDF
    We present a novel robust and secure steganography technique to hide images into audio files aiming at increasing the carrier medium capacity. The audio files are in the standard WAV format, which is based on the LSB algorithm while images are compressed by the GMPR technique which is based on the Discrete Cosine Transform (DCT) and high frequency minimization encoding algorithm. The method involves compression-encryption of an image file by the GMPR technique followed by hiding it into audio data by appropriate bit substitution. The maximum number of bits without significant effect on audio signal for LSB audio steganography is 6 LSBs. The encrypted image bits are hidden into variable and multiple LSB layers in the proposed method. Experimental results from observed listening tests show that there is no significant difference between the stego audio reconstructed from the novel technique and the original signal. A performance evaluation has been carried out according to quality measurement criteria of Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR)
    corecore