78 research outputs found

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Image Tamper Detection and Recovery by Intersecting Signatures

    Get PDF
    In this paper, we propose an exact image authentication scheme that can, in the best case, detect image tampering with the accuracy of one pixel. This method is based on constructing blocks in the image in such a manner that they intersect with one another in different directions. Such a technique is very useful to identify whether an individual image pixel has been tampered with. Moreover, the tampered region can be well recovered with the embedded recover data

    Fragile watermarking using Karhunen–Loève transform: the KLT-F approach

    Get PDF

    Secure and Robust Fragile Watermarking Scheme for Medical Images

    Get PDF
    Over the past decade advances in computer-based communication and health services, the need for image security becomes urgent to address the requirements of both safety and non-safety in medical applications. This paper proposes a new fragile watermarking based scheme for image authentication and self-recovery for medical applications. The proposed scheme locates image tampering as well as recovers the original image. A host image is broken into 4×4 blocks and Singular Value Decomposition (SVD) is applied by inserting the traces of block wise SVD into the Least Significant Bit (LSB) of the image pixels to figure out the transformation in the original image. Two authentication bits namely block authentication and self-recovery bits were used to survive the vector quantization attack. The insertion of self-recovery bits is determined with Arnold transformation, which recovers the original image even after a high tampering rate. SVD-based watermarking information improves the image authentication and provides a way to detect different attacked area. The proposed scheme is tested against different types of attacks such are text removal attack, text insertion attack, and copy and paste attack

    Multiple Content Adaptive Intelligent Watermarking Schemes for the Protection of Blocks of a Document Image

    Get PDF
    Most of the documents contain different types of information such as white space, static information and dynamic information or mix of static and dynamic information. In this paper, multiple watermarking schemes are proposed for protection of the information content. The proposed approach comprises of three phases. In Phase-1, the edges of the source document image are extracted and the edge image is decomposed into blocks of uniform size. In Phase-2, GLCM features like energy, homogeneity, contrast and correlation are extracted from each block and the blocks are classified as no-information, static, dynamic and mix of static and dynamic information content blocks. The adjacent blocks of same type are merged together into a single block. Each block is watermarked in Phase-3. The type and amount of watermarking applied is decided intelligently and adaptively based on the classification of the blocks which results in improving embedding capacity and reducing time complexity incurred during watermarking. Experiments are conducted exhaustively on all the images in the corpus. The experimental evaluations exhibit better classification of segments based on information content in the block. The proposed technique also outperforms the existing watermarking schemes on document images in terms of robustness, accuracy of tamper detection and recovery

    Optimisation of Tamper Localisation and Recovery Watermarking Techniques

    Get PDF
    Digital watermarking has found many applications in many fields, such as: copyright tracking, media authentication, tamper localisation and recovery, hardware control, and data hiding. The idea of digital watermarking is to embed arbitrary data inside a multimedia cover without affecting the perceptibility of the multimedia cover itself. The main advantage of using digital watermarking over other techniques, such as signature based techniques, is that the watermark is embedded into the multimedia cover itself and will not be removed even with the format change. Image watermarking techniques are categorised according to their robustness against modification into: fragile, semi-fragile, and robust watermarking. In fragile watermarking any change to the image will affect the watermark, this makes fragile watermarking very useful in image authentication applications, as in medical and forensic fields, where any tampering of the image is: detected, localised, and possibly recovered. Fragile watermarking techniques are also characterised by a higher capacity when compared to semi-fragile and robust watermarking. Semifragile watermarking techniques resist some modifications, such as lossy compression and low pass filtering. Semi-fragile watermarking can be used in authentication and copyright validation applications whenever the amount of embedded information is small and the expected modifications are not severe. Robust watermarking techniques are supposed to withstand more severe modifications, such as rotation and geometrical bending. Robust watermarking is used in copyright validation applications, where copyright information in the image must remains accessible even after severe modification. This research focuses on the application of image watermarking in tamper localisation and recovery and it aims to provide optimisation for some of its aspects. The optimisation aims to produce watermarking techniques that enhance one or more of the following aspects: consuming less payload, having better recovery quality, recovering larger tampered area, requiring less calculations, and being robust against the different counterfeiting attacks. Through the survey of the main existing techniques, it was found that most of them are using two separate sets of data for the localisation and the recovery of the tampered area, which is considered as a redundancy. The main focus in this research is to investigate employing image filtering techniques in order to use only one set of data for both purposes, leading to a reduced redundancy in the watermark embedding and enhanced capacity. Four tamper localisation and recovery techniques were proposed, three of them use one set of data for localisation and recovery while the fourth one is designed to be optimised and gives a better performance even though it uses separate sets of data for localisation and recovery. The four techniques were analysed and compared to two recent techniques in the literature. The performance of the proposed techniques vary from one technique to another. The fourth technique shows the best results regarding recovery quality and Probability of False Acceptance (PFA) when compared to the other proposed techniques and the two techniques in the literature, also, all proposed techniques show better recovery quality when compared to the two techniques in the literature

    A Framework for Multimedia Data Hiding (Security)

    Get PDF
    With the proliferation of multimedia data such as images, audio, and video, robust digital watermarking and data hiding techniques are needed for copyright protection, copy control, annotation, and authentication. While many techniques have been proposed for digital color and grayscale images, not all of them can be directly applied to binary document images. The difficulty lies in the fact that changing pixel values in a binary document could introduce Irregularities that is very visually noticeable. We have seen but limited number of papers proposing new techniques and ideas for document image watermarking and data hiding. In this paper, we present an overview and summary of recent developments on this important topic, and discuss important issues such as robustness and data hiding capacity of the different techniques

    A robust video watermarking using simulated block based spatial domain technique

    Get PDF
    A digital watermark embeds an imperceptible signal into data such as audio, video and images, for different purposes including authentication and tamper detection. Tamper detection techniques for video watermarking play a major role of forensic evidence in court. The existing techniques for concealing information in the multimedia host are mostly based on spatial domain rather than frequency domain. The spatial domain techniques are not as robust as frequency domain techniques. In order to improve the robustness of spatial domain, a watermark can be embedded several times repeatedly. In order for spatial domain techniques to be more efficient, more payload is needed to embed additional information. The additional information would include the redundant watermarks to ensure the achievable robustness and more metadata of pixels to ensure achievable efficiency to detect more attacks. All these required additional information will degrade the imperceptibility. This research focuses on video watermarking, particularly with respect to Audio Video Interleaved (AVI) form of video file format. The block-wise method is used to determine which block exactly altered. A high imperceptible and efficient tamper detection watermarking technique is proposed which embeds in first and second Least Significant Bits (LSB). The proposed technique divides the video stream to 2*2 nonoverlapping simulated blocks. Nine common attacks to video have been applied to the proposed technique. An imperceptible and efficient tamper detection technique with a novel method of video segmentation to comprise more pixels watermarked is proposed. Experimental results show the technique is able to detect the attacks with the average of Peak Signal-to-Noise Ratio (PSNR) as 47.87dB. The results illustrate the proposed technique improves imperceptibility and efficiency of tamper detection

    Digital watermarking in medical images

    Get PDF
    This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore