19,402 research outputs found

    Neural Network Based Torque Control of Switched Reluctance Motor for Hybrid Vehicle Propulsion

    Get PDF
    Considering the extensive non-linearities in the switched reluctance motor (SRM) drive, variation in the DC bus voltage and specific requirements of the hybrid electric vehicles (HEVs) traction application, a feed-forward back propagation neural network (BPNN) based torque controller is proposed. By using proposed controller, the torque ripple has been effectively reduced at low speeds while the power efficiency has been optimized at high speeds range. The problem of multi-valuedness related with the neural network based direct inverse control has been targeted by designing a bank of two-hidden-layer neural network controllers. And the problem of torque oscillation due to the change of control mode and step change of firing angle has been solved by using dead-band filtering and nearly continuous changing of firing angle and phase currents. Computed results are presented to demonstrate the effectiveness of the proposed control scheme

    Combined Traction and Energy Recovery Motor for Electric Vehicles

    Get PDF
    Electric vehicle manufacturers are looking for ways to optimize energy use for vehicle range extension and reduction of battery capacity. Electric motors have lower efficiencies at very low speed and high torque. This is typically at vehicle launch from standstill, at very low speeds, and during energy regeneration at lower speeds and approaching standstill. The KersTech solution is a breakthrough technology allowing supplement of the electric drive with a hydraulic drive, active in lower speeds ranges, dropping out as the electric motor takes over in its higher efficiency range of operation. The report consists of four parts. Part I presents novel the hybrid vehicle simulations in MATLAB. Both the Diesel-Hydraulic Hybrid Vehicle and Electric-Hydraulic Hybrid Vehicle have been simulated and compared in this report. Part II deals with the electrical system control design. Permanent magnet synchronous motors have been widely used in hybrid electric vehicle applications. Permanent magnet synchronous motors have a small size, high efficiency and high performance. This report presents a mathematical model of permanent magnet synchronous motor. Power switching electronics are used to generate the desired voltage/current from DC source. A pulse width modulation technique controls the switching power electronic by creating a control signals which are applied to their gates. The whole circuit of the inverter based on space vector pulse width modulation is simulated in MATLAB/Simulink and its results are presented. Field-oriented control is implemented via digital signal processors to control the permanent magnet synchronous motor. Clarke and Park transformations are applied to “abc coordinate frame of the permanent magnet synchronous motor model to get the “qd coordinate frame used in the field oriented control technique. Hence, the developed torque and the magnetizing the flux component are controlled separately. PI controller is used to control the motor speed and torque. PI controllers are designed using frequency response method and a symmetric optimum method. The whole system is simulated based on the mathematical model of PMSM and field oriented control method with designed PI controllers. Simulation results show the PMSM to have perfect dynamic response. A digital signal processor can be used to implement the field oriented control algorithms and compute the parameters in real time. Implementation of field oriented control of a permanent magnet synchronous motor shows that the motor has satisfactory response in terms of torque ripple and speed response. Nonlinear control, including Sliding Mode Controller and State Dependent Linear Matrix Inequality Controller, are also proposed as a powerful control technique to govern the speed of the permanent magnet synchronous motor in hybrid vehicle applications. In Part III, we discuss the hydraulic system design. Finally, in Part IV, the dSPACE hardware controller is used for the overall control system design

    A quantitative comparison between BLDC, PMSM, brushed DC and stepping motor technologies

    Get PDF
    Brushless DC machines (BLDC), Permanent Magnet Synchronous Machines (PMSM), Stepping Motors and Brushed DC machines (BDC) usage is ubiquitous in the power range below 1,5kW. There is a lot of common knowledge on these technologies. Stepping Motors are ideally suited for open loop positioning, BLDC machines are the most obvious candidate for high-speed applications, etc. However, literature lacks comprehensive research comparing these machines over a large range of applications. In this paper, more than 100 motors are considered. Their characteristics are compared and presented in a comprehensive way. These results support the common knowledge concerning the field of application of each technology and new insights follow from this quantitative comparison

    ISO efficiency curves of a two-phase hybrid stepping motor

    Get PDF
    Stepping motors are used in numerous applications because of their low manufacturing cost and simple speed control. It is well known that their energetic efficiency is low but actual values are typically not available. In this paper the influence of the control algorithm on the efficiency of the stepping motor is analyzed, measured and discussed. For good comparison of the efficiency off the analyzed algorithms , ISO efficiency curves are used. As the number of stepping motors installed worldwide is enormous, some percents energy saving per stepping motor can mean a big difference in global energy use

    Experimental characterization of a supercapacitor-based electrical torque-boost system for downsized ICE vehicles

    Get PDF
    The need to improve fuel economy and reduce the emission of CO2 and other harmful pollution from internal-combustion-engine vehicles has led to engine downsizing. However, downsized turbocharged engines exhibit a relatively low torque capability at low engine speeds. To overcome this problem, an electrical torque boost may be employed while accelerating and changing gear and to facilitate energy recovery during regenerative braking. This paper describes the operational requirements of a supercapacitor-based torque-boost system, outlines the design and sizing of the electrical drive-train components, and presents experimental characterization of a demonstrator system

    Direct Flux Field Oriented Control of IPM Drives with Variable DC-Link in the Field-Weakening Region

    Get PDF
    This paper presents the direct flux control of an interior permanent-magnet (IPM) motor drive in the field-weakening region. The output torque is regulated by the coordinated control of the stator flux amplitude and the current component in quadrature with the flux, and it is implemented in the stator flux reference frame. The control system guarantees maximum torque production taking into account voltage and current limits, in particular in case of large dc-link variations. The field-oriented control does not necessarily require an accurate magnetic model of the IPM motor, and it is able to exploit the full inverter voltage at different dc-link levels with no additional voltage control loop. The feasibility of the proposed control method is investigated in discrete-time simulation, then tested on a laboratory rig, and finally implemented on board of an electric scooter prototype. The motor under test is an IPM permanent-magnet-assisted synchronous reluctance machine, with high-saliency and limited permanent-magnet flu

    Nonlinear Dynamics of a Current Controlled D.C. Drive with PID Controller

    Get PDF
    ABSTRACT: This paper describes a closed loop model of a current controlled PMDC motor drive with PID Controller. The output speed of the PMDC motor is compared with a preset reference speed. The differences between these two signals are fed as an error signal to the PID controller of the system. The output of the speed controller is the actuating signal that controls the duty cycle of converter and hence controls the converter output. Through this controlled converter output, required voltage gets injected into the motor to bring it back to its desired speed. As a small change in the input voltage can cause a large change in the motor current and lead to a particular drive control feature. I. RELATED WORK PM motor drives have been a topic of interest for the last twenty years. Different authors have carried out modeling and simulation of such drives. The three most common speed control methods of a dc motor are field resistance control, armature voltage control, and armature resistance control II. INTRODUCTION Developments of high performance motor drives are very essential for industrial applications. A high performance motor drive system must have good dynamic speed command tracking and load regulating response. DC motors provide excellent control of speed for acceleration and deceleration and chopper fed permanent magnet PMDC motor allows precise voltage control, which is necessary for speed and torque control applications. DC drives, because of their simplicity, ease of application, reliability and favourable cost have long been a backbone of industrial applications. DC drives are less complex as compared to AC drives system. DC drives are normally less expensive for low horsepower ratings. DC motors have a long tradition of being used as adjustable speed machines and a wide range of options have evolved for this purpose. Cooling blowers and inlet air flanges provide cooling air for a wide speed range at constant torque. PMDC motors are conveniently portable and well fit to special applications, like industrial equipments and machineries that are not easily run from remote power sources. PMDC motor is considered a SISO (Single Input and Single Output) system having torque/speed characteristics compatible with most mechanical loads. This makes a PMDC motor controllable over a wide range of speeds by proper adjustment of the terminal voltage using various innovative design and control technique

    The design and analysis of single flank transmission error tester for loaded gears

    Get PDF
    To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement

    Three-phase modular permanent magnet brushless machine for torque boosting on a downsized ICE vehicle

    Get PDF
    The paper describes a relatively new topology of 3-phase permanent magnet (PM) brushless machine, which offers a number of significant advantages over conventional PM brushless machines for automotive applications, such as electrical torque boosting at low engine speeds for vehicles equipped with downsized internal combustion engine (ICEs). The relative merits of feasible slot/pole number combinations for the proposed 3-phase modular PM brushless ac machine are discussed, and an analytical method for establishing the open-circuit and armature reaction magnetic field distributions when such a machine is equipped with a surface-mounted magnet rotor is presented. The results allow the prediction of the torque, the phase emf, and the self- and mutual winding inductances in closed forms, and provide a basis for comparative studies, design optimization and machine dynamic modeling. However, a more robust machine, in terms of improved containment of the magnets, results when the magnets are buried inside the rotor, which, since it introduces a reluctance torque, also serves to reduce the back-emf, the iron loss and the inverter voltage rating. The performance of a modular PM brushless machine equipped with an interior magnet rotor is demonstrated by measurements on a 22-pole/24-slot prototype torque boosting machine
    corecore