1,191 research outputs found

    A hybrid multilevel converter for medium and high voltage applications

    Get PDF
    This paper investigates the suitability of the hybrid multilevel converter for medium and high voltage application. The converter operation, modulation, and capacitor voltage balancing method are described in detail. The ability of the hybrid multilevel converter to operate with different modulation indices and load power factors is investigated. It has been established that the hybrid multilevel converter is capable of operating independent of load power factor. Operation with variable modulation index increases voltage stresses on the converter switches and does not alter the fundamental voltage magnitude as in all known voltage source converter topologies. The viability of the hybrid multilevel converter for medium and high voltage applications is confirmed by simulations

    Comparison between two VSC-HVDC transmission systems technologies : modular and neutral point clamped multilevel converter

    Get PDF
    The paper presents a detail comparison between two voltage source converter high voltage dc transmission systems, the first is based on neutral point-clamped (also known as HVDC-Light) and the second is based on innovative modular multilevel converter (known as HVDC-Plus). The comparison focuses on the reliability issues of both technologies such as fault ride-through capability and control flexibility. To address these issues, neutral point-clamped and three-level modular converters are considered in both stations of the dc transmission system, and several operating conditions are considered, including, symmetrical and asymmetrical faults. Computer simulation in Matlab-Simulink environment has been used to confirm the validity of the results

    Comparison between flying capacitor and modular multilevel inverter

    Get PDF
    The paper describes the operational principle of flying capacitor and modular multilevel inverters. The detailed discussions of dc link capacitors voltage balancing methods for both inverters are given in order to enable fair comparison. The causes of dc link capacitors voltage imbalance in flying capacitor multilevel inverter with more than three levels are highlighted. Computer simulation is used to compare the performance of both inverters under several operating conditions

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y TecnologĂ­a DPI2001-3089Ministerio de EduaciĂłn y Ciencia d TEC2006-0386

    Modified half-bridge modular multilevel converter for HVDC systems with DC fault ride-through capability

    Get PDF
    One of the main challenges of voltage source converter based HVDC systems is DC faults. In this paper, two different modified half-bridge modular multilevel converter topologies are proposed. The proposed converters offer a fault tolerant against the most severe pole-to-pole DC faults. The converter comprises three switches or two switches and 4 diodes in each cell, which can result in less cost and losses compared to the full-bridge modular multilevel converter. Converter structure and controls are presented including the converter modulation and capacitors balancing. MATLAB/SIMULINK simulations are carried out to verify converter operation in normal and faulty conditions

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Modular multilevel converter with modified half-bridge submodule and arm filter for dc transmission systems with DC fault blocking capability

    Get PDF
    Although a modular multilevel converter (MMC) is universally accepted as a suitable converter topology for the high voltage dc transmission systems, its dc fault ride performance requires substantial improvement in order to be used in critical infrastructures such as transnational multi-terminal dc (MTDC) networks. Therefore, this paper proposes a modified submodule circuit for modular multilevel converter that offers an improved dc fault ride through performance with reduced semiconductor losses and enhanced control flexibility compared to that achievable with full-bridge submodules. The use of the proposed submodules allows MMC to retain its modularity; with semiconductor loss similar to that of the mixed submodules MMC, but higher than that of the half-bridge submodules. Besides dc fault blocking, the proposed submodule offers the possibility of controlling ac current in-feed during pole-to-pole dc short circuit fault, and this makes such submodule increasingly attractive and useful for continued operation of MTDC networks during dc faults. The aforesaid attributes are validated using simulations performed in MATLAB/SIMULINK, and substantiated experimentally using the proposed submodule topology on a 4-level small-scale MMC prototype

    A survey on capacitor voltage control in neutral-point-clamped multilevel converters

    Get PDF
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.Peer ReviewedPostprint (published version

    Feed-forward Space Vector Modulation for Single-Phase Multilevel Cascade Converters with any DC voltage ratio

    Get PDF
    Modulation techniques for multilevel converters can create distorted output voltages and currents if the DC link voltages are unbalanced. This situation can be avoided if the instantaneous DC voltage error is not taken into account in the modulation process. This paper proposes a feed-forward space vector modulation method for a single-phase multilevel cascade converter. Using this modulation technique, the modulated output voltage of the power converter always generates the reference determined by the controller even in worst case voltage unbalance conditions. In addition the possibility of optimizing the DC voltage ratio between the H-bridges of the power converter is introduced. Experimental results from a 5kVA prototype are presented in order to validate the proposed modulation technique

    Derivation of Voltage Source Multilevel Converter Topologies

    Get PDF
    • 

    corecore