110 research outputs found

    Transformerless Inverter Topologies for Single-Phase Photovoltaic Systems:A Comparative Review

    Get PDF
    In photovoltaic (PV) applications, a transformer is often used to provide galvanic isolation and voltage ratio transformations between input and output. However, these conventional iron-and copper-based transformers increase the weight/size and cost of the inverter while reducing the efficiency and power density. It is therefore desirable to avoid using transformers in the inverter. However, additional care must be taken to avoid safety hazards such as ground fault currents and leakage currents, e.g., via the parasitic capacitor between the PV panel and ground. Consequently, the grid connected transformerless PV inverters must comply with strict safety standards such as IEEE 1547.1, VDE0126-1-1, EN 50106, IEC61727, and AS/N ZS 5033. Various transformerless inverters have been proposed recently to eliminate the leakage current using different techniques such as decoupling the dc from the ac side and/or clamping the common mode (CM) voltage (CMV) during the freewheeling period, or using common ground configurations. The permutations and combinations of various decoupling techniques with integrated voltage buck-boost for maximum power point tracking (MPPT) allow numerous new topologies and configurations which are often confusing and difficult to follow when seeking to select the right topology. Therefore, to present a clear picture on the development of transformerless inverters for the next-generation grid-connected PV systems, this paper aims to comprehensively review and classify various transformerless inverters with detailed analytical comparisons. To reinforce the findings and comparisons as well as to give more insight on the CM characteristics and leakage current, computer simulations of major transformerless inverter topologies have been performed in PLECS software. Moreover, the cost and size are analyzed properly and summarized in a table. Finally, efficiency and thermal analysis are provided with a general summary as well as a technology roadmap.</p

    Bipolar DC output fed grounded DC-AC converter for photovoltaic application

    Get PDF
    Introduction. In recent years the usage of electricity has increased tremendously as the electrical needs and loads got increased. Hence the researchers focused on the electricity generation from renewable sources in order to promote sustainable green environment. Owing to the lesser cost and more reliable high efficiency system with reduced use of equipments became prominent for the grid connected photovoltaic single phase systems. The novelty of this proposed converters are to reduce total power loss and to analyze the performance of the converter under various modulation index and to have lesser harmonics using sinusoidal pulse width modulation technique for both T-type and F-type inverter. Interest of the work is to merge two DC-DC converters which have same output voltage in order to have transformer less utilization of power. This has given pathway to develop a new DC-DC converter network by merging the common input nodes of CUK and SEPIC converter. Purpose. This similar structure of both converters made it easy to combine the input stages of and to get bipolar output. Methods. Here we can get bipolar output without the utilization of transformer which minimizes the overall size of the proposed system. In this paper, a combined CUK-SEPIC based grid connected transformerless inverter for photovoltaic application is suggested. Results. The suggested converter is simulated using MATLAB and the results were discussed. Further the circuit is extended with a 1 kW F-type inverter to demonstrate grid connection of the converter. Practical value. This converter can be implemented for photovoltaic applications for obtaining the bipolar DC output from the DC source.Вступ. В останні роки використання електроенергії значно зросло, оскільки потреби в електроенергії та навантаження збільшились. Тому дослідники зосередилися на виробництві електроенергії з відновлюваних джерел, щоб сприяти стійкому зеленому середовищу. Через меншу вартість та більш надійну високоефективну систему зі зменшеним використанням обладнання набули популярності фотоелектричні однофазні системи, підключені до мережі. Новизна пропонованих перетворювачів полягає у зниженні загальних втрат потужності та аналізі характеристик перетворювача при різних індексах модуляції, а також у зменшенні гармонік з використанням методу широтно-імпульсної модуляції синусоїдального типу для інверторів як Т-типу, так і F-типу. Інтерес роботи полягає в об'єднанні двох перетворювачів постійного струму з однаковою вихідною напругою, щоб мати менше використання потужності трансформатора. Це дозволило розробити нову мережу перетворювачів постійного струму шляхом об'єднання загальних вхідних вузлів перетворювача CUK та SEPIC. Мета. Подібна структура обох перетворювачів дозволила легко поєднати вхідні каскади та отримати біполярний вихідний сигнал. Методи. Тут ми можемо отримати біполярний вихід без використання трансформатора, що мінімізує загальний розмір пропонованої системи. У цій статті пропонується комбінований безтрансформаторний інвертор на основі CUK-SEPIC, підключений до мережі, для фотоелектричних застосувань. Результати. Пропонований перетворювач моделюється за допомогою MATLAB, результати обговорюються. Далі схема розширена інвертором F-типу потужністю 1 кВт, щоб продемонструвати підключення перетворювача до мережі. Практична цінність. Цей перетворювач може бути реалізований для фотоелектричних застосувань для отримання біполярного виходу постійного струму джерела постійного струму

    Bipolar DC output fed grounded DC-AC converter for photovoltaic application

    Get PDF
    Introduction. In recent years the usage of electricity has increased tremendously as the electrical needs and loads got increased. Hence the researchers focused on the electricity generation from renewable sources in order to promote sustainable green environment. Owing to the lesser cost and more reliable high efficiency system with reduced use of equipments became prominent for the grid connected photovoltaic single phase systems. The novelty of this proposed converters are to reduce total power loss and to analyze the performance of the converter under various modulation index and to have lesser harmonics using sinusoidal pulse width modulation technique for both T-type and F-type inverter. Interest of the work is to merge two DC-DC converters which have same output voltage in order to have transformer less utilization of power. This has given pathway to develop a new DC-DC converter network by merging the common input nodes of CUK and SEPIC converter. Purpose. This similar structure of both converters made it easy to combine the input stages of and to get bipolar output. Methods. Here we can get bipolar output without the utilization of transformer which minimizes the overall size of the proposed system. In this paper, a combined CUK-SEPIC based grid connected transformerless inverter for photovoltaic application is suggested. Results. The suggested converter is simulated using MATLAB and the results were discussed. Further the circuit is extended with a 1 kW F-type inverter to demonstrate grid connection of the converter. Practical value. This converter can be implemented for photovoltaic applications for obtaining the bipolar DC output from the DC source.Вступ. В останні роки використання електроенергії значно зросло, оскільки потреби в електроенергії та навантаження збільшились. Тому дослідники зосередилися на виробництві електроенергії з відновлюваних джерел, щоб сприяти стійкому зеленому середовищу. Через меншу вартість та більш надійну високоефективну систему зі зменшеним використанням обладнання набули популярності фотоелектричні однофазні системи, підключені до мережі. Новизна пропонованих перетворювачів полягає у зниженні загальних втрат потужності та аналізі характеристик перетворювача при різних індексах модуляції, а також у зменшенні гармонік з використанням методу широтно-імпульсної модуляції синусоїдального типу для інверторів як Т-типу, так і F-типу. Інтерес роботи полягає в об'єднанні двох перетворювачів постійного струму з однаковою вихідною напругою, щоб мати менше використання потужності трансформатора. Це дозволило розробити нову мережу перетворювачів постійного струму шляхом об'єднання загальних вхідних вузлів перетворювача CUK та SEPIC. Мета. Подібна структура обох перетворювачів дозволила легко поєднати вхідні каскади та отримати біполярний вихідний сигнал. Методи. Тут ми можемо отримати біполярний вихід без використання трансформатора, що мінімізує загальний розмір пропонованої системи. У цій статті пропонується комбінований безтрансформаторний інвертор на основі CUK-SEPIC, підключений до мережі, для фотоелектричних застосувань. Результати. Пропонований перетворювач моделюється за допомогою MATLAB, результати обговорюються. Далі схема розширена інвертором F-типу потужністю 1 кВт, щоб продемонструвати підключення перетворювача до мережі. Практична цінність. Цей перетворювач може бути реалізований для фотоелектричних застосувань для отримання біполярного виходу постійного струму джерела постійного струму

    Analysis, Design, and Control of a Single-Phase Single-Stage Grid-Connected Transformerless Solar Inverter

    Get PDF
    As energy utilization is increasing with the rise in the world’s power demand, the traditional energy sources are depleting at a high pace. It has led to attention drawn towards inexhaustible energy resources. There is a huge augmentation in the power generation from renewable energy sources (RES) like wind, solar, hydropower, biomass, etc. to reduce the stress on conventional energy sources like fossil fuels, oil, gas, etc. There has been a steep increase in interest for wind and solar energy systems. PV energy has been growing swiftly in the past two decades which made it most demanded power generation system based on RES. This worldwide requirement for solar energy has led to an immense amount of innovation and development in the Photovoltaic (PV) market. The Conventional grid-connected PV inverter was either with DC/DC converter or without DC/DC converter. These inverters were isolated using a transformer either on the grid (AC) side as a low-frequency transformer or as a high-frequency transformer on the DC side. Elimination of the transformer leads to a galvanic connection between the grid and PV module. This gives rise to the flow of leakage current which is disastrous for the system when it exceeds a specific value. Thus, minimization of this leakage current after the removal of the transformer has been an interesting topic explored by many researchers. Many topologies have been proposed targeting reduction in this leakage current either by 1.) Directly connecting the PV negative with neutral of utility grid or 2.) Disconnecting the PV panel side from AC side. This generally involved addition of more switches or diodes or supplementary branches to disconnect during the freewheeling period. Generally, the above-mentioned ways lead to a reduction in efficiency due to increased losses or complex circuitry. The motivation of this thesis is to design a transformerless inverter for single-phase PV grid-tied system with a smaller number of devices and still has minimum ground current. It discusses the prevailing inverter topologies in detail and then explains the modes of operation of the proposed inverter. A simple control strategy has been derived and passive elements of the inverter are designed. The simulation results presented have validated the theoretical claims. The experimental results which are similar to simulation results are evidence that the proposed topology is suitable for PV grid-tied systems. Also, the dynamic modeling of the inverter has been done to derive the plant transfer function. Then, the Proportional Resonant (PR) controller has been designed to ensure the flow of sinusoidal current into the grid with zero steady-state error and constant sinusoidal grid voltage irrespective of load change. The simulation and experimental results achieved high performance which makes this topology successful and promising for grid-tied PV systems

    Design and Evaluation of High Efficiency Power Converters Using Wide-Bandgap Devices for PV Systems

    Get PDF
    The shortage of fossil resources and the need for power generation options that produce little or no environmental pollution drives and motivates the research on renewable energy resources. Power electronics play an important role in maximizing the utilization of energy generation from renewable energy resources. One major renewable energy source is photovoltaics (PV), which comprises half of all recently installed renewable power generation in the world. For a grid-connected system, two power stages are needed to utilize the power generated from the PV source. In the first stage, a DCDC converter is used to extract the maximum power from the PV panel and to boost the low output voltage generated to satisfy the inverter side requirements. In the second stage, a DC-AC inverter is used to convert and deliver power loads for grid-tied applications. In general, PV panels have low efficiency so high-performance power converters are required to ensure highly efficient PV systems. The development of wide-bandgap (WBG) power switching devices, especially in the range of 650 V and 1200 V blocking class voltage, opens up the possibility of achieving a reliable and highly efficient grid-tied PV system. This work will study the benefits of utilizing WBG semiconductor switching devices in low power residential scale PV systems in terms of efficiency, power density, and thermal analysis. The first part of this dissertation will examine the design of a high gain DC-DC converter. Also, a performance comparison will be conducted between the SiC and Si MOSFET switching devices at 650 V blocking voltage regarding switching waveform behavior, switching and conduction losses, and high switching frequency operation. A major challenge in designing a transformerless inverter is the circulating of common mode leakage current in the absence of galvanic isolation. The value of the leakage current must be less than 300mA, per the DIN VDE 0126-1-1 standard. The second part of this work investigates a proposed high-efficiency transformerless inverter with low leakage current. Subsequently, the benefits of using SiC MOSFET are evaluated and compared to Si IGBT at 1200 V blocking voltage in terms of efficiency improvement, filter size reduction, and increasing power rating. Moreover, a comprehensive thermal model design is presented using COMSOL software to compare the heat sink requirements of both of the selected switching devices, SiC MOSFET and Si IGBT. The benchmarking of switching devices shows that SiC MOSFET has superior switching and conduction characteristics that lead to small power losses. Also, increasing switching frequency has a small effect on switching losses with SiC MOSFET due to its excellent switching characteristics. Therefore, system performance is found to be enhanced with SiC MOSFET compared to that of Si MOSFET and Si IGBET under wide output loads and switching frequency situations. Due to the high penetration of PV inverters, it is necessary to provide advanced functions, such as reactive power generation to enable connectivity to the utility grid. Therefore, this research proposes a modified modulation method to support the generation of reactive power. Additionally, a modified topology is proposed to eliminate leakage current

    Analysis and Modeling of Transformerless Photovoltaic Inverter Systems

    Get PDF

    A New DC-DC Converter for Photovoltaic Systems: Coupled-Inductors Combined Cuk-SEPIC Converter

    Get PDF
    Abstract—An enhanced DC-DC converter is proposed in this paper, based on the combination of the Cuk and SEPIC converters, which is well-suited for solar photovoltaic (PV) applications. The converter uses only one switch (which is ground-referenced, so simple gate drive circuitry may be used), yet provides dual outputs in the form of a bipolar DC bus. The bipolar output from the DC-DC converter is able to send power to the grid via any inverter with a unipolar or bipolar DC input, and leakage currents can be eliminated if the latter type is used without using lossy DC capacitors in the load current loop. The proposed converter uses integrated magnetics cores to couple the input and output inductors, which significantly reduces the input current ripple and hence greatly improves the power extracted from the solar PV system. The design methodology along with simulation, experimental waveforms, and efficiency measurements of a 4 kW DC-DC converter are presented to prove the concept of the proposed converter. Further, a 1 kW inverter is also developed to demonstrate the converter’s grid-connection potential

    Modulation for the AVC-HERIC Inverter to Compensate for Deadtime and Minimum Pulsewidth Limitation Distortions

    Get PDF
    corecore