2,114,034 research outputs found

    Generic functional requirements for a NASA general-purpose data base management system

    Get PDF
    Generic functional requirements for a general-purpose, multi-mission data base management system (DBMS) for application to remotely sensed scientific data bases are detailed. The motivation for utilizing DBMS technology in this environment is explained. The major requirements include: (1) a DBMS for scientific observational data; (2) a multi-mission capability; (3) user-friendly; (4) extensive and integrated information about data; (5) robust languages for defining data structures and formats; (6) scientific data types and structures; (7) flexible physical access mechanisms; (8) ways of representing spatial relationships; (9) a high level nonprocedural interactive query and data manipulation language; (10) data base maintenance utilities; (11) high rate input/output and large data volume storage; and adaptability to a distributed data base and/or data base machine configuration. Detailed functions are specified in a top-down hierarchic fashion. Implementation, performance, and support requirements are also given

    Velocity measurements for a solar active region fan loop from Hinode/EIS observations

    Full text link
    The velocity pattern of a fan loop structure within a solar active region over the temperature range 0.15-1.5 MK is derived using data from the EUV Imaging Spectrometer (EIS) on board the Hinode satellite. The loop is aligned towards the observer's line-of-sight and shows downflows (redshifts) of around 15 km/s up to a temperature of 0.8 MK, but for temperatures of 1.0 MK and above the measured velocity shifts are consistent with no net flow. This velocity result applies over a projected spatial distance of 9 Mm and demonstrates that the cooler, redshifted plasma is physically disconnected from the hotter, stationary plasma. A scenario in which the fan loops consist of at least two groups of "strands" - one cooler and downflowing, the other hotter and stationary -- is suggested. The cooler strands may represent a later evolutionary stage of the hotter strands. A density diagnostic of Mg VII was used to show that the electron density at around 0.8 MK falls from 3.2 x 10^9 cm^-3 at the loop base, to 5.0 x 10^8 cm^-3 at a projected height of 15 Mm. A filling factor of 0.2 is found at temperatures close to the formation temperature of Mg VII (0.8 MK), confirming that the cooler, downflowing plasma occupies only a fraction of the apparent loop volume. The fan loop is rooted within a so-called "outflow region" that displays low intensity and blueshifts of up to 25 km/s in Fe XII 195.12 A (formed at 1.5 MK), in contrast to the loop's redshifts of 15 km/s at 0.8 MK. A new technique for obtaining an absolute wavelength calibration for the EIS instrument is presented and an instrumental effect, possibly related to a distorted point spread function, that affects velocity measurements is identified.Comment: 42 pages, 15 figures, submitted to Ap

    The X-ray puzzle of the L1551 IRS 5 jet

    Full text link
    Protostars are actively accreting matter and they drive spectacular, dynamic outflows, which evolve on timescales of years. X-ray emission from these jets has been detected only in a few cases and little is known about its time evolution. We present a new Chandra observation of L1551 IRS 5's jet in the context of all available X-ray data of this object. Specifically, we perform a spatially resolved spectral analysis of the X-ray emission and find that (a) the total X-ray luminosity is constant over almost one decade, (b) the majority of the X-rays appear to be always located close to the driving source, (c) there is a clear trend in the photon energy as a function of the distance to the driving source indicating that the plasma is cooler at larger distances and (d) the X-ray emission is located in a small volume which is unresolved perpendicular to the jet axis by Chandra. A comparison of our X-ray data of the L1551 IRS 5 jet both with models as well as X-ray observations of other protostellar jets shows that a base/standing shock is a likely and plausible explanation for the apparent constancy of the observed X-ray emission. Internal shocks are also consistent with the observed morphology if the supply of jet material by the ejection of new blobs is sufficiently constant. We conclude that the study of the X-ray emission of protostellar jet sources allows us to diagnose the innermost regions close to the acceleration region of the outflows.Comment: A&A accepted, 14 pages, 9 figure

    Treatment of Gastric Adenocarcinoma May Differ Among Hospital Types in the United States, a Report from the National Cancer Data Base

    Get PDF
    The concept that complex surgical procedures should be performed at high-volume centers to improve surgical morbidity and mortality is becoming widely accepted. We wanted to determine if there were differences in the treatment of patients with gastric cancer between community cancer centers and teaching hospitals in the United States. Data from the 2001 Gastric Cancer Patient Care Evaluation Study of the National Cancer Data Base comprising 6,047 patients with gastric adenocarcinoma treated at 691 hospitals were assessed. The mean number of patients treated was larger at teaching hospitals (14/year) when compared to community centers (5–9/year) (p < 0.05). The utilization of laparoscopy and endoscopic ultrasonography were significantly more common at teaching centers (p < 0.01). Pathologic assessment of greater than 15 nodes was documented in 31% of specimen at community hospitals and 38% at teaching hospitals (p < 0.01). Adjusted for cancer stage, chemotherapy and radiation therapy were utilized with equal frequency at all types of treatment centers. The 30-day postoperative mortality was lowest at teaching hospitals (5.5%) and highest at community hospitals (9.9%) (p < 0.01). These data support previous publications demonstrating that patients with diseases requiring specialized treatment have lower operative mortality when treated at high-volume centers

    The star formation rate distribution function of the local Universe

    Get PDF
    We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the Imperial IRAS Faint Source Catalogue redshift data base (IIFSCz) catalogue, and the GALEX All-Sky Imaging Survey (AIS), respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy (LVL) Survey, allowing us to extend these luminosity functions to lower luminosities (~10^6 L_⊙), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the star formation rate (SFR) distribution function for the local Universe. We find that it has a Schechter form, the faint-end slope has a constant value (to the limits of our data) of α=−1.51 ± 0.08 and the 'characteristic' SFR ψ^* is 9.2 M_⊙ yr^(−1). We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 ± 0.0016 M_⊙ yr^(−1) Mpc^(−3), of which ~20 per cent is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 ± 1 per cent is due to LIRGs, and 0.7 ± 0.2 per cent is occurring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust-obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line-of-sight orientation effects as well as conventional internal extinction

    CAPRI: A Geometric Foundation for Computational Analysis and Design

    Get PDF
    CAPRI is a software building tool-kit that refers to two ideas; (1) A simplified, object-oriented, hierarchical view of a solid part integrating both geometry and topology definitions, and (2) programming access to this part or assembly and any attached data. A complete definition of the geometry and application programming interface can be found in the document CAPRI: Computational Analysis PRogramming Interface appended to this report. In summary the interface is subdivided into the following functional components: 1. Utility routines -- These routines include the initialization of CAPRI, loading CAD parts and querying the operational status as well as closing the system down. 2. Geometry data-base queries -- This group of functions allow all top level applications to figure out and get detailed information on any geometric component in the Volume definition. 3. Point queries -- These calls allow grid generators, or solvers doing node adaptation, to snap points directly onto geometric entities. 4. Calculated or geometrically derived queries -- These entry points calculate data from the geometry to aid in grid generation. 5. Boundary data routines -- This part of CAPRI allows general data to be attached to Boundaries so that the boundary conditions can be specified and stored within CAPRI s data-base. 6. Tag based routines -- This part of the API allows the specification of properties associated with either the Volume (material properties) or Boundary (surface properties) entities. 7. Geometry based interpolation routines -- This part of the API facilitates Multi-disciplinary coupling and allows zooming through Boundary Attachments. 8. Geometric creation and manipulation -- These calls facilitate constructing simple solid entities and perform the Boolean solid operations. Geometry constructed in this manner has the advantage that if the data is kept consistent with the CAD package, therefore a new design can be incorporated directly and is manufacturable. 9. Master Model access This addition to the API allows for the querying of the parameters and dimensions of the model. The feature tree is also exposed so it is easy to see where the parameters are applied. Calls exist to allow for the modification of the parameters and the suppression/unsuppression of nodes in the tree. Part regeneration is performed by a single API call and a new part becomes available within CAPRI (if the regeneration was successful). This is described in a separate document. Components 1-7 are considered the CAPRI base level reader

    OGMS: A Facility to Measure Out-gassing Rate of Materials

    Get PDF
    AbstractOGMS, the OutGassing Measurement System, is a facility to measure the outgassing rates of materials. The rate is highly important factor in vacuum science dealing with systems working at pressures below 10-6 mbar. In ultra- high vacuum range it plays role in system pressure at given pumping speed. For standard materials the data is available in literature but at times not under condition of specific application. Many application use very specific materials under vacuum conditions. Cryoadsorption Cryopump a project at Institute for plasma Research uses steel samples coated with activated carbon as sorbents. Various kinds of sorbents were used. Necessity to measure the outgassing rate of such unique materials established the OGMS. The OGMS facility has a known conductance of 2.46 l/s and base outgassing rate of ∌ 3x10-12 mbar-ltr/s-cm2. An ultimate vacuum of < 5 x10-9 mbar was achieved in a sample chamber of volume ∌7.5 liters. This paper describes OGMS, its calibration, experiments to find outgassing rate of steel samples and comparison with reported data to establish authenticity for new materials. It also reports results of outgassing rates of cryo-adhesives and activated charcoal coated steel samples

    Global and regional cardiac function in lifelong endurance athletes with and without myocardial fibrosis

    Get PDF
    The aim of the present study was to compare cardiac structure as well as global and regional cardiac function in athletes with and without myocardial fibrosis (MF). Cardiac magnetic resonance imaging with late gadolinium enhancement was used to detect MF and global cardiac structure in nine lifelong veteran endurance athletes (58 ± 5 years, 43 ± 5 years of training). Transthoracic echocardiography using tissue-Doppler and myocardial strain imaging assessed global and regional (18 segments) longitudinal left ventricular function. MF was present in four athletes (range 1–8 g) and not present in five athletes. MF was located near the insertion points of the right ventricular free wall on the left ventricle in three athletes and in the epicardial lateral wall in one athlete. Athletes with MF demonstrated a larger end diastolic volume (205 ± 24 vs 173 ± 18 ml) and posterior wall thickness (11 ± 1 vs 9 ± 1 mm) compared to those without MF. The presence of MF did not mediate global tissue velocities or global longitudinal strain and strain rate; however, regional analysis of longitudinal strain demonstrated reduced function in some fibrotic regions. Furthermore, base to apex gradient was affected in three out of four athletes with MF. Lifelong veteran endurance athletes with MF demonstrate larger cardiac dimensions and normal global cardiac function. Fibrotic areas may demonstrate some co-localised regional cardiac dysfunction, evidenced by an affected cardiac strain and base to apex gradient. These data emphasize the heterogeneous phenotype of MF in athletes
    • 

    corecore