33 research outputs found

    MOR-UAV: A Benchmark Dataset and Baselines for Moving Object Recognition in UAV Videos

    Full text link
    Visual data collected from Unmanned Aerial Vehicles (UAVs) has opened a new frontier of computer vision that requires automated analysis of aerial images/videos. However, the existing UAV datasets primarily focus on object detection. An object detector does not differentiate between the moving and non-moving objects. Given a real-time UAV video stream, how can we both localize and classify the moving objects, i.e. perform moving object recognition (MOR)? The MOR is one of the essential tasks to support various UAV vision-based applications including aerial surveillance, search and rescue, event recognition, urban and rural scene understanding.To the best of our knowledge, no labeled dataset is available for MOR evaluation in UAV videos. Therefore, in this paper, we introduce MOR-UAV, a large-scale video dataset for MOR in aerial videos. We achieve this by labeling axis-aligned bounding boxes for moving objects which requires less computational resources than producing pixel-level estimates. We annotate 89,783 moving object instances collected from 30 UAV videos, consisting of 10,948 frames in various scenarios such as weather conditions, occlusion, changing flying altitude and multiple camera views. We assigned the labels for two categories of vehicles (car and heavy vehicle). Furthermore, we propose a deep unified framework MOR-UAVNet for MOR in UAV videos. Since, this is a first attempt for MOR in UAV videos, we present 16 baseline results based on the proposed framework over the MOR-UAV dataset through quantitative and qualitative experiments. We also analyze the motion-salient regions in the network through multiple layer visualizations. The MOR-UAVNet works online at inference as it requires only few past frames. Moreover, it doesn't require predefined target initialization from user. Experiments also demonstrate that the MOR-UAV dataset is quite challenging

    Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle Imagery: Review and Experimental Comparisons

    Full text link
    With the advancement of maritime unmanned aerial vehicles (UAVs) and deep learning technologies, the application of UAV-based object detection has become increasingly significant in the fields of maritime industry and ocean engineering. Endowed with intelligent sensing capabilities, the maritime UAVs enable effective and efficient maritime surveillance. To further promote the development of maritime UAV-based object detection, this paper provides a comprehensive review of challenges, relative methods, and UAV aerial datasets. Specifically, in this work, we first briefly summarize four challenges for object detection on maritime UAVs, i.e., object feature diversity, device limitation, maritime environment variability, and dataset scarcity. We then focus on computational methods to improve maritime UAV-based object detection performance in terms of scale-aware, small object detection, view-aware, rotated object detection, lightweight methods, and others. Next, we review the UAV aerial image/video datasets and propose a maritime UAV aerial dataset named MS2ship for ship detection. Furthermore, we conduct a series of experiments to present the performance evaluation and robustness analysis of object detection methods on maritime datasets. Eventually, we give the discussion and outlook on future works for maritime UAV-based object detection. The MS2ship dataset is available at \href{https://github.com/zcj234/MS2ship}{https://github.com/zcj234/MS2ship}.Comment: 32 pages, 18 figure

    DeepBurning-MixQ: An Open Source Mixed-Precision Neural Network Accelerator Design Framework for FPGAs

    Full text link
    Mixed-precision neural networks (MPNNs) that enable the use of just enough data width for a deep learning task promise significant advantages of both inference accuracy and computing overhead. FPGAs with fine-grained reconfiguration capability can adapt the processing with distinct data width and models, and hence, can theoretically unleash the potential of MPNNs. Nevertheless, commodity DPUs on FPGAs mostly emphasize generality and have limited support for MPNNs especially the ones with lower data width. In addition, primitive DSPs in FPGAs usually have much larger data width than that is required by MPNNs and haven't been sufficiently co-explored with MPNNs yet. To this end, we propose an open source MPNN accelerator design framework specifically tailored for FPGAs. In this framework, we have a systematic DSP-packing algorithm to pack multiple lower data width MACs in a single primitive DSP and enable efficient implementation of MPNNs. Meanwhile, we take DSP packing efficiency into consideration with MPNN quantization within a unified neural network architecture search (NAS) framework such that it can be aware of the DSP overhead during quantization and optimize the MPNN performance and accuracy concurrently. Finally, we have the optimized MPNN fine-tuned to a fully pipelined neural network accelerator template based on HLS and make best use of available resources for higher performance. Our experiments reveal the resulting accelerators produced by the proposed framework can achieve overwhelming advantages in terms of performance, resource utilization, and inference accuracy for MPNNs when compared with both handcrafted counterparts and prior hardware-aware neural network accelerators on FPGAs.Comment: Accepted by 2023 IEEE/ACM International Conference on Computer-Aided Design (ICCAD
    corecore