249 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Power-Aware Planning and Design for Next Generation Wireless Networks

    Get PDF
    Mobile network operators have witnessed a transition from being voice dominated to video/data domination, which leads to a dramatic traffic growth over the past decade. With the 4G wireless communication systems being deployed in the world most recently, the fifth generation (5G) mobile and wireless communica- tion technologies are emerging into research fields. The fast growing data traffic volume and dramatic expansion of network infrastructures will inevitably trigger tremendous escalation of energy consumption in wireless networks, which will re- sult in the increase of greenhouse gas emission and pose ever increasing urgency on the environmental protection and sustainable network development. Thus, energy-efficiency is one of the most important rules that 5G network planning and design should follow. This dissertation presents power-aware planning and design for next generation wireless networks. We study network planning and design problems in both offline planning and online resource allocation. We propose approximation algo- rithms and effective heuristics for various network design scenarios, with different wireless network setups and different power saving optimization objectives. We aim to save power consumption on both base stations (BSs) and user equipments (UEs) by leveraging wireless relay placement, small cell deployment, device-to- device communications and base station consolidation. We first study a joint signal-aware relay station placement and power alloca- tion problem with consideration for multiple related physical constraints such as channel capacity, signal to noise ratio requirement of subscribers, relay power and network topology in multihop wireless relay networks. We present approximation schemes which first find a minimum number of relay stations, using maximum transmit power, to cover all the subscribers meeting each SNR requirement, and then ensure communications between any subscriber and a base station by ad- justing the transmit power of each relay station. In order to save power on BS, we propose a practical solution and offer a new perspective on implementing green wireless networks by embracing small cell networks. Many existing works have proposed to schedule base station into sleep to save energy. However, in reality, it is very difficult to shut down and reboot BSs frequently due to nu- merous technical issues and performance requirements. Instead of putting BSs into sleep, we tactically reduce the coverage of each base station, and strategi- cally place microcells to offload the traffic transmitted to/from BSs to save total power consumption. In online resource allocation, we aim to save tranmit power of UEs by en- abling device-to-device (D2D) communications in OFDMA-based wireless net- works. Most existing works on D2D communications either targeted CDMA- based single-channel networks or aimed at maximizing network throughput. We formally define an optimization problem based on a practical link data rate model, whose objective is to minimize total power consumption while meeting user data rate requirements. We propose to solve it using a joint optimization approach by presenting two effective and efficient algorithms, which both jointly determine mode selection, channel allocation and power assignment. In the last part of this dissertation, we propose to leverage load migration and base station consolidation for green communications and consider a power- efficient network planning problem in virtualized cognitive radio networks with the objective of minimizing total power consumption while meeting traffic load demand of each Mobile Virtual Network Operator (MVNO). First we present a Mixed Integer Linear Programming (MILP) to provide optimal solutions. Then we present a general optimization framework to guide algorithm design, which solves two subproblems, channel assignment and load allocation, in sequence. In addition, we present an effective heuristic algorithm that jointly solves the two subproblems. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods
    • …
    corecore