168 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Pricing and Resource Allocation via Game Theory for a Small-Cell Video Caching System

    Full text link
    Evidence indicates that downloading on-demand videos accounts for a dramatic increase in data traffic over cellular networks. Caching popular videos in the storage of small-cell base stations (SBS), namely, small-cell caching, is an efficient technology for reducing the transmission latency whilst mitigating the redundant transmissions of popular videos over back-haul channels. In this paper, we consider a commercialized small-cell caching system consisting of a network service provider (NSP), several video retailers (VR), and mobile users (MU). The NSP leases its SBSs to the VRs for the purpose of making profits, and the VRs, after storing popular videos in the rented SBSs, can provide faster local video transmissions to the MUs, thereby gaining more profits. We conceive this system within the framework of Stackelberg game by treating the SBSs as a specific type of resources. We first model the MUs and SBSs as two independent Poisson point processes, and develop, via stochastic geometry theory, the probability of the specific event that an MU obtains the video of its choice directly from the memory of an SBS. Then, based on the probability derived, we formulate a Stackelberg game to jointly maximize the average profit of both the NSP and the VRs. Also, we investigate the Stackelberg equilibrium by solving a non-convex optimization problem. With the aid of this game theoretic framework, we shed light on the relationship between four important factors: the optimal pricing of leasing an SBS, the SBSs allocation among the VRs, the storage size of the SBSs, and the popularity distribution of the VRs. Monte-Carlo simulations show that our stochastic geometry-based analytical results closely match the empirical ones. Numerical results are also provided for quantifying the proposed game-theoretic framework by showing its efficiency on pricing and resource allocation.Comment: Accepted to appear in IEEE Journal on Selected Areas in Communications, special issue on Video Distribution over Future Interne

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Enable Reliable and Secure Data Transmission in Resource-Constrained Emerging Networks

    Get PDF
    The increasing deployment of wireless devices has connected humans and objects all around the world, benefiting our daily life and the entire society in many aspects. Achieving those connectivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and secure data transmission requires various resources including spectrum, energy, and computational capability. However, these resources are usually limited in many scenarios, especially when the number of devices is considerably large, bringing catastrophic consequences to data transmission. For example, given the fact that most of IoT devices have limited computational abilities and inadequate security protocols, data transmission is vulnerable to various attacks such as eavesdropping and replay attacks, for which traditional security approaches are unable to address. On the other hand, in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum along with the energy consumption. As a result, mobile users experience significant congestion and delays when they request data from the cellular service provider, especially in many crowded areas. In this dissertation, we target on reliable and secure data transmission in resource-constrained emerging networks. The first two works investigate new security challenges in the current heterogeneous IoT environment, and then provide certain countermeasures for reliable data communication. To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heterogeneous environment, such as smart home IoT. To defend against the attack, we propose two defense strategies with the help of a commonly found wireless device. In addition, to enable secure data transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Besides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable and energy-efficient data transmission for a group of users in the cellular network. The concept of mobile participation is introduced to assist data offloading from the base station to users in the group by leveraging the mobility of users and the social features among a group of users. Following with that, we deploy device-to-device data offloading within the group to achieve the energy efficiency at the user side while adapting to their increasing traffic demands. In the end, we consider a perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in DSA in both additive white Gaussian noise and fading environments

    Power allocation for D2D communications using max-min message-passing algorithm

    Get PDF
    The approach of factor-graphs (FGs) is applied in the context of power control and user pairing in Device-to-Device (D2D) communications as an effective underlay concept in wireless cellular networks. D2D communications can increase the spectral efficiency of wireless cellular networks by establishing a direct link between devices with limited help from the evolved node base stations (eNBs). A well-designed user pairing and power allocation scheme with low complexity can remarkably improve the system’s performance. In this paper, a simple and distributed FG based approach is utilized for power control and user pairing implementation in an underlay cellular network with D2D communications. A max-min criterion is proposed to maximize the minimum rate of all active users in the network, including the cellular and multiple D2D co-channel links in the uplink direction. An associated message-passing (MP) algorithm is presented to distributedly solve the resultant NP-hard maximization problem, with a guaranteed convergence compared to game-theoretic and Q-learning based methods. The complexity and convergence of the proposed method are analyzed and numerical results confirm that the proposed scheme outperforms alternative algorithms in terms of complexity, while keeping the sum-rate of users nearly the same as centralized counterpart methods
    corecore