359 research outputs found

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    A Stackelberg-game approach for disaster-recovery communications utilizing cooperative D2D

    Get PDF
    In this paper, we investigate disaster-recovery com- munications utilizing two-cell cooperative D2D communications. Specifically, one cell is in a healthy area while the other is in a disaster area. A user equipment (UE) in the healthy area aims to assist a UE in the disaster area to recover wireless information transfer (WIT) via an energy harvesting (EH) relay. In the healthy area, the cellular BS shares the spectrum with the UE, however, both of them may belong to different service providers. Thus, the UE pays an amount of price as incentive to the BS as part of two processes: energy trading and interference pricing. We formulate these two processes as two Stackelberg games, where their equilibrium is derived as closed- form solutions. The results help provide a sustainable framework for disaster recovery when the involving parties juggle between energy trading, interference compromise and payment incentives in establishing communications during the recovery process

    Disaster management using D2D communication with power transfer and clustering techniques

    Get PDF
    Device-to-device (D2D) communications as an underlay to cellular networks can not only increase the system capacity and energy efficiency but also enable national security and public safety services. A key requirement for these services is to provide alternative access to cellular networks when they are partially or fully damaged due to a natural disaster event. In this paper, we employ energy harvesting (EH) at the relay with simultaneous wireless information and power transfer to prolong the lifetime of energy constrained network. In particular, we consider a user equipment relay that harvests energy from radio frequency signal via base station and use harvested energy for D2D communications. We integrate clustering technique with D2D communications into cellular networks such that communication services can be maintained when the cellular infrastructure becomes partially dysfunctional. Simulation results show that our proposed EH-based D2D clustering model performs efficiently in terms of coverage, energy efficiency, and cluster formation to extend the communication area. Moreover, a novel concept of power transfer in D2D clustering with user equipment relay and cluster head is proposed to provide a new framework to handle critical and emergency situations. The proposed approach is shown to provide significant energy saving for both mobile users and clustering heads to survive in emergency and disaster situations

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Disaster management using D2D communication with power transfer and clustering techniques

    Get PDF
    Device-to-device (D2D) communications as an underlay to cellular networks can not only increase the system capacity and energy efficiency but also enable national security and public safety services. A key requirement for these services is to provide alternative access to cellular networks when they are partially or fully damaged due to a natural disaster event. In this paper, we employ energy harvesting (EH) at the relay with simultaneous wireless information and power transfer to prolong the lifetime of energy constrained network. In particular, we consider a user equipment relay that harvests energy from radio frequency signal via base station and use harvested energy for D2D communications. We integrate clustering technique with D2D communications into cellular networks such that communication services can be maintained when the cellular infrastructure becomes partially dysfunctional. Simulation results show that our proposed EH-based D2D clustering model performs efficiently in terms of coverage, energy efficiency, and cluster formation to extend the communication area. Moreover, a novel concept of power transfer in D2D clustering with user equipment relay and cluster head is proposed to provide a new framework to handle critical and emergency situations. The proposed approach is shown to provide significant energy saving for both mobile users and clustering heads to survive in emergency and disaster situations

    A Stackelberg-game approach for disaster-recovery communications utilizing cooperative D2D

    Get PDF
    In this paper, we investigate disaster-recovery com- munications utilizing two-cell cooperative D2D communications. Specifically, one cell is in a healthy area while the other is in a disaster area. A user equipment (UE) in the healthy area aims to assist a UE in the disaster area to recover wireless information transfer (WIT) via an energy harvesting (EH) relay. In the healthy area, the cellular BS shares the spectrum with the UE, however, both of them may belong to different service providers. Thus, the UE pays an amount of price as incentive to the BS as part of two processes: energy trading and interference pricing. We formulate these two processes as two Stackelberg games, where their equilibrium is derived as closed- form solutions. The results help provide a sustainable framework for disaster recovery when the involving parties juggle between energy trading, interference compromise and payment incentives in establishing communications during the recovery process

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Architecture for public safety network using D2D communication

    Get PDF
    Device to Device (D2D) communication has been proposed as an underlay to Long-Term evolution (LTE) network as a means of harvesting the proximity, reuse and hop gains. However, D2D communication can also serve as a technology for providing public safety and disaster relief services. In this article, the basic concepts of D2D communications are first introduced and then existing fundamental works on disaster communication are discussed. We focus on the performance of the network architecture by utilizing the relay assisted transmission which can effectively enhance the capacity and power saving of the network. We also propose the distance based strategy to reduce the computational complexity and power transmission. Finally, simulation results are provided to verify the proposed architecture
    corecore