83 research outputs found

    Metric Dimension for Gabriel Unit Disk Graphs is NP-Complete

    Full text link
    We show that finding a minimal number of landmark nodes for a unique virtual addressing by hop-distances in wireless ad-hoc sensor networks is NP-complete even if the networks are unit disk graphs that contain only Gabriel edges. This problem is equivalent to Metric Dimension for Gabriel unit disk graphs. The Gabriel edges of a unit disc graph induce a planar O(\sqrt{n}) distance and an optimal energy spanner. This is one of the most interesting restrictions of Metric Dimension in the context of wireless multi-hop networks.Comment: A brief announcement of this result has been published in the proceedings of ALGOSENSORS 201

    Exact Localisations of Feedback Sets

    Full text link
    The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G=(V,E)G=(V,E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e)G_{\mathrm{el}}(e), Gsi(e)G_{\mathrm{si}}(e) of all elementary cycles or simple cycles running through some arc eEe \in E, can be computed in O(E2)\mathcal{O}\big(|E|^2\big) and O(E4)\mathcal{O}(|E|^4), respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in O(VE3)\mathcal{O}(|V||E|^3). We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times O(2mE4log(V))\mathcal{O}\big(2^{m}|E|^4\log(|V|)\big) and O(2nΔ(G)4V4log(E))\mathcal{O}\big(2^{n}\Delta(G)^4|V|^4\log(|E|)\big), where mEV+1m \leq |E|-|V| +1, n(Δ(G)1)VE+1n \leq (\Delta(G)-1)|V|-|E| +1, respectively. The parameters m,nm,n can be computed in O(E3)\mathcal{O}(|E|^3), O(Δ(G)3V3)\mathcal{O}(\Delta(G)^3|V|^3), respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m,nm,n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER

    On Metric Dimension of Functigraphs

    Full text link
    The \emph{metric dimension} of a graph GG, denoted by dim(G)\dim(G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1G_1 and G2G_2 be disjoint copies of a graph GG and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvv=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid v=f(u)\}. We study how metric dimension behaves in passing from GG to C(G,f)C(G,f) by first showing that 2dim(C(G,f))2n32 \le \dim(C(G, f)) \le 2n-3, if GG is a connected graph of order n3n \ge 3 and ff is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.Comment: 10 pages, 7 figure

    On the metric dimension of a class of planar graphs

    Get PDF
    Let H = (V, E) be a non-trivial connected graph with vertex set V and edge set E. A set of ordered vertices Rm from V (H) is said to be a resolving set for H if each vertex of H is uniquely determined by its vector of distances to the vertices of Rm. The number of vertices in a smallest resolving set is called the metric dimension of H. In this article, we study the metric dimension for a rotationally symmetric family of planar graphs, each of which is shown to have an independent minimum resolving set of cardinality three.Publisher's Versio

    Metric Dimension of Amalgamation of Graphs

    Full text link
    A set of vertices SS resolves a graph GG if every vertex is uniquely determined by its vector of distances to the vertices in SS. The metric dimension of GG is the minimum cardinality of a resolving set of GG. Let {G1,G2,,Gn}\{G_1, G_2, \ldots, G_n\} be a finite collection of graphs and each GiG_i has a fixed vertex v0iv_{0_i} or a fixed edge e0ie_{0_i} called a terminal vertex or edge, respectively. The \emph{vertex-amalgamation} of G1,G2,,GnG_1, G_2, \ldots, G_n, denoted by VertexAmal{Gi;v0i}Vertex-Amal\{G_i;v_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal vertices. Similarly, the \emph{edge-amalgamation} of G1,G2,,GnG_1, G_2, \ldots, G_n, denoted by EdgeAmal{Gi;e0i}Edge-Amal\{G_i;e_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal edges. Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.Comment: 9 pages, 2 figures, Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications (CSGT2013), revised version 21 December 201
    corecore