302 research outputs found

    Expressive Power in First Order Topology

    Get PDF
    A first order representation (fo.r.) in topology is an assignment of finitary relational structures of the same type to topological spaces in such a way that homeomorphic spaces get sent to isomorphic structures. We first define the notions one f.o.r. is at least as expressive as another relative to a class of spaces and one class of spaces is definable in another relative to an f.o.r. , and prove some general statements. Following this we compare some well-known classes of spaces and first order representations. A principal result is that if X and Y are two Tichonov spaces whose posets of zero-sets are elementarily equivalent then their respective rings of bounded continuous real-valued functions satisfy the same positiveuniversal sentences. The proof of this uses the technique of constructing ultraproducts as direct limits of products in a category theoretic setting

    Canonical extensions and ultraproducts of polarities

    Full text link
    J{\'o}nsson and Tarski's notion of the perfect extension of a Boolean algebra with operators has evolved into an extensive theory of canonical extensions of lattice-based algebras. After reviewing this evolution we make two contributions. First it is shown that the failure of a variety of algebras to be closed under canonical extensions is witnessed by a particular one of its free algebras. The size of the set of generators of this algebra can be made a function of a collection of varieties and is a kind of Hanf number for canonical closure. Secondly we study the complete lattice of stable subsets of a polarity structure, and show that if a class of polarities is closed under ultraproducts, then its stable set lattices generate a variety that is closed under canonical extensions. This generalises an earlier result of the author about generation of canonically closed varieties of Boolean algebras with operators, which was in turn an abstraction of the result that a first-order definable class of Kripke frames determines a modal logic that is valid in its so-called canonical frames

    Characterizations of categories of commutative C*-subalgebras

    Get PDF
    We aim to characterize the category of injective *-homomorphisms between commutative C*-subalgebras of a given C*-algebra A. We reduce this problem to finding a weakly terminal commutative subalgebra of A, and solve the latter for various C*-algebras, including all commutative ones and all type I von Neumann algebras. This addresses a natural generalization of the Mackey-Piron programme: which lattices are those of closed subspaces of Hilbert space? We also discuss the way this categorified generalization differs from the original question.Comment: 24 page

    Singly generated quasivarieties and residuated structures

    Get PDF
    A quasivariety K of algebras has the joint embedding property (JEP) iff it is generated by a single algebra A. It is structurally complete iff the free countably generated algebra in K can serve as A. A consequence of this demand, called "passive structural completeness" (PSC), is that the nontrivial members of K all satisfy the same existential positive sentences. We prove that if K is PSC then it still has the JEP, and if it has the JEP and its nontrivial members lack trivial subalgebras, then its relatively simple members all belong to the universal class generated by one of them. Under these conditions, if K is relatively semisimple then it is generated by one K-simple algebra. It is a minimal quasivariety if, moreover, it is PSC but fails to unify some finite set of equations. We also prove that a quasivariety of finite type, with a finite nontrivial member, is PSC iff its nontrivial members have a common retract. The theory is then applied to the variety of De Morgan monoids, where we isolate the sub(quasi)varieties that are PSC and those that have the JEP, while throwing fresh light on those that are structurally complete. The results illuminate the extension lattices of intuitionistic and relevance logics

    A discussion on the origin of quantum probabilities

    Get PDF
    We study the origin of quantum probabilities as arising from non-boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorvian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case).Comment: Improved versio

    A Recipe for State-and-Effect Triangles

    Full text link
    In the semantics of programming languages one can view programs as state transformers, or as predicate transformers. Recently the author has introduced state-and-effect triangles which capture this situation categorically, involving an adjunction between state- and predicate-transformers. The current paper exploits a classical result in category theory, part of Jon Beck's monadicity theorem, to systematically construct such a state-and-effect triangle from an adjunction. The power of this construction is illustrated in many examples, covering many monads occurring in program semantics, including (probabilistic) power domains

    A Category of Ordered Algebras Equivalent to the Category of Multialgebras

    Full text link
    It is well known that there is a correspondence between sets and complete, atomic Boolean algebras (CABA's) taking a set to its power-set and, reciprocally, a complete, atomic Boolean algebra to its set of atomic elements. Of course, such a correspondence induces an equivalence between the opposite category of Set\textbf{Set} and the category of CABA's. We extend this result by taking multialgebras over a signature Σ\Sigma, specifically those whose non-deterministic operations cannot return the empty-set, to CABA's with their zero element removed and a structure of Σ\Sigma-algebra compatible with its order; reciprocally, one of these "almost Boolean" Σ\Sigma-algebras is taken to its set of atomic elements equipped with a structure of multialgebra over Σ\Sigma. This leads to an equivalence between the category of Σ\Sigma-multialgebras and a category of ordered Σ\Sigma-algebras. The intuition, here, is that if one wishes to do so, non-determinism may be replaced by a sufficiently rich ordering of the underlying structures
    corecore