3,769 research outputs found

    In praise of tedious anatomy

    Get PDF
    Functional neuroimaging is fundamentally a tool for mapping function to structure, and its success consequently requires neuroanatomical precision and accuracy. Here we review the various means by which functional activation can be localized to neuroanatomy and suggest that the gold standard should be localization to the individual’s or group’s own anatomy through the use of neuroanatomical knowledge and atlases of neuroanatomy. While automated means of localization may be useful, they cannot provide the necessary accuracy, given variability between individuals. We also suggest that the field of functional neuroimaging needs to converge on a common set of methods for reporting functional localization including a common “standard” space and criteria for what constitutes sufficient evidence to report activation in terms of Brodmann’s areas

    Cortical Folding Patterns and Predicting Cytoarchitecture

    Get PDF
    The human cerebral cortex is made up of a mosaic of structural areas, frequently referred to as Brodmann areas (BAs). Despite the widespread use of cortical folding patterns to perform ad hoc estimations of the locations of the BAs, little is understood regarding 1) how variable the position of a given BA is with respect to the folds, 2) whether the location of some BAs is more variable than others, and 3) whether the variability is related to the level of a BA in a putative cortical hierarchy. We use whole-brain histology of 10 postmortem human brains and surface-based analysis to test how well the folds predict the locations of the BAs. We show that higher order cortical areas exhibit more variability than primary and secondary areas and that the folds are much better predictors of the BAs than had been previously thought. These results further highlight the significance of cortical folding patterns and suggest a common mechanism for the development of the folds and the cytoarchitectonic fields.National Center for Research Resources (U.S.) (P41-RR14075)National Center for Research Resources (U.S.) (R01-RR16594-01A1)National Center for Research Resources (U.S.) (NCRR BIRN Morphometric Project BIRN002, U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB001550)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB006758)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01)Mental Illness and Neuroscience Discovery (MIND) InstituteNational Institutes of Health (U.S.) (NIH Roadmap for Medical Research (grant U54 EB005149))Hermann von Helmholtz-Gemeinschaft Deutscher ForschungszentrenDeutsche Forschungsgemeinschaft (DFG)National Institutes of Health. National Institute for Biomedical Imaging and BioengineeringNational Institute of Neurological Disorders and Stroke (U.S.)National Institute of Mental Health (U.S.

    Tracking dynamic interactions between structural and functional connectivity : a TMS/EEG-dMRI study

    Get PDF
    Transcranial magnetic stimulation (TMS) in combination with neuroimaging techniques allows to measure the effects of a direct perturbation of the brain. When coupled with high-density electroencephalography (TMS/hd-EEG), TMS pulses revealed electrophysiological signatures of different cortical modules in health and disease. However, the neural underpinnings of these signatures remain unclear. Here, by applying multimodal analyses of cortical response to TMS recordings and diffusion magnetic resonance imaging (dMRI) tractography, we investigated the relationship between functional and structural features of different cortical modules in a cohort of awake healthy volunteers. For each subject, we computed directed functional connectivity interactions between cortical areas from the source-reconstructed TMS/hd-EEG recordings and correlated them with the correspondent structural connectivity matrix extracted from dMRI tractography, in three different frequency bands (alpha, beta, gamma) and two sites of stimulation (left precuneus and left premotor). Each stimulated area appeared to mainly respond to TMS by being functionally elicited in specific frequency bands, that is, beta for precuneus and gamma for premotor. We also observed a temporary decrease in the whole-brain correlation between directed functional connectivity and structural connectivity after TMS in all frequency bands. Notably, when focusing on the stimulated areas only, we found that the structure-function correlation significantly increases over time in the premotor area controlateral to TMS. Our study points out the importance of taking into account the major role played by different cortical oscillations when investigating the mechanisms for integration and segregation of information in the human brain

    Age-related changes in the primary motor cortex of newborn to adult domestic pig sus scrofa domesticus

    Get PDF
    The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analy-ses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR-and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development

    From genes to folds: a review of cortical gyrification theory.

    Get PDF
    Cortical gyrification is not a random process. Instead, the folds that develop are synonymous with the functional organization of the cortex, and form patterns that are remarkably consistent across individuals and even some species. How this happens is not well understood. Although many developmental features and evolutionary adaptations have been proposed as the primary cause of gyrencephaly, it is not evident that gyrification is reducible in this way. In recent years, we have greatly increased our understanding of the multiple factors that influence cortical folding, from the action of genes in health and disease to evolutionary adaptations that characterize distinctions between gyrencephalic and lissencephalic cortices. Nonetheless it is unclear how these factors which influence events at a small-scale synthesize to form the consistent and biologically meaningful large-scale features of sulci and gyri. In this article, we review the empirical evidence which suggests that gyrification is the product of a generalized mechanism, namely the differential expansion of the cortex. By considering the implications of this model, we demonstrate that it is possible to link the fundamental biological components of the cortex to its large-scale pattern-specific morphology and functional organization.This work was funded by the Bernard Wolfe Health Neuroscience Fund and the Wellcome Trust.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00429-014-0961-

    Cortical Complexity in Cetacean Brains

    Get PDF
    Cetaceans (dolphins, whales, and porpoises) have a long, dramatically divergent evolutionary history compared with terrestrial mammals. Throughout their 55–60 million years of evolution, cetaceans acquired a compelling set of characteristics that include echolocation ability (in odontocetes), complex auditory and communicative capacities, and complex social organization. Moreover, although cetaceans have not shared a common ancestor with primates for over 90 million years, they possess a set of cognitive attributes that are strikingly convergent with those of many primates, including great apes and humans. In contrast, cetaceans have evolved a highly unusual combination of neurobiological features different from that of primates. As such, cetacean brains offer a critical opportunity to address questions about how complex behavior can be based on very different neuroanatomical and neurobiological evolutionary products. Cetacean brains and primate brains are arguably most meaningfully conceived as alternative evolutionary routes to neurobiological and cognitive complexity. In this article, we summarize data on brain size and hemisphere surface configuration in several cetacean species and present an overview of the cytoarchitectural complexity of the cerebral cortex of the bottlenose dolphin

    Mapping the human cortical surface by combining quantitative T(1) with retinotopy

    Get PDF
    We combined quantitative relaxation rate (R1= 1/T1) mapping-to measure local myelination-with fMRI-based retinotopy. Gray-white and pial surfaces were reconstructed and used to sample R1 at different cortical depths. Like myelination, R1 decreased from deeper to superficial layers. R1 decreased passing from V1 and MT, to immediately surrounding areas, then to the angular gyrus. High R1 was correlated across the cortex with convex local curvature so the data was first "de-curved". By overlaying R1 and retinotopic maps, we found that many visual area borders were associated with significant R1 increases including V1, V3A, MT, V6, V6A, V8/VO1, FST, and VIP. Surprisingly, retinotopic MT occupied only the posterior portion of an oval-shaped lateral occipital R1 maximum. R1 maps were reproducible within individuals and comparable between subjects without intensity normalization, enabling multi-center studies of development, aging, and disease progression, and structure/function mapping in other modalities

    Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging

    Get PDF
    The year 2009 marked the 100th anniversary of the publication of the famous brain map of Korbinian Brodmann. Although a “classic” guide to microanatomical parcellation of the cerebral cortex, it is – from today's state-of-the-art neuroimaging perspective – problematic to use Brodmann's map as a structural guide to functional units in the cortex. In this article we discuss some of the reasons, especially the problematic compatibility of the “post-mortem world” of microstructural brain maps with the “in vivo world” of neuroimaging. We conclude with some prospects for the future of in vivo structural brain mapping: a new approach which has the enormous potential to make direct correlations between microstructure and function in living human brains: “in vivo Brodmann mapping” with high-field magnetic resonance imaging
    corecore