23 research outputs found

    Cyclostationary Processes on Shape Spaces for Gait-Based Recognition

    Get PDF
    Abstract. We present a geometric and statistical approach to gaitbased human recognition. The novelty here is to consider observations of gait, considered as planar silhouettes, to be cyclostationary processes on a shape space of simple closed curves. Consequently, gait analysis reduces to quantifying differences between underlying stochastic processes using their observations. Individual shapes can be compared using geodesic lengths, but the comparison of gait cycles requires tools for extraction, interpolation, registration, and averaging of individual gait cycles before comparisons. The main steps in our approach are: (i) off-line extraction of human silhouettes from IR video data, (ii) use of piecewise-geodesic paths, connecting the observed shapes, to smoothly interpolate between them, (iii) computation of an average gait cycle within class (i.e. associated with a person) using Karcher means, (iv) registration of average cycles using linear and nonlinear time scaling, (iv) comparisons of average cycles using geodesic lengths between the corresponding shapes. We illustrate this approach on gait sequence obtained from infrared video clips. Experimental results are presented for a data set of 26 subjects.

    Robust gait recognition under variable covariate conditions

    Get PDF
    PhDGait is a weak biometric when compared to face, fingerprint or iris because it can be easily affected by various conditions. These are known as the covariate conditions and include clothing, carrying, speed, shoes and view among others. In the presence of variable covariate conditions gait recognition is a hard problem yet to be solved with no working system reported. In this thesis, a novel gait representation, the Gait Flow Image (GFI), is proposed to extract more discriminative information from a gait sequence. GFI extracts the relative motion of body parts in different directions in separate motion descriptors. Compared to the existing model-free gait representations, GFI is more discriminative and robust to changes in covariate conditions. In this thesis, gait recognition approaches are evaluated without the assumption on cooperative subjects, i.e. both the gallery and the probe sets consist of gait sequences under different and unknown covariate conditions. The results indicate that the performance of the existing approaches drops drastically under this more realistic set-up. It is argued that selecting the gait features which are invariant to changes in covariate conditions is the key to developing a gait recognition system without subject cooperation. To this end, the Gait Entropy Image (GEnI) is proposed to perform automatic feature selection on each pair of gallery and probe gait sequences. Moreover, an Adaptive Component and Discriminant Analysis is formulated which seamlessly integrates the feature selection method with subspace analysis for fast and robust recognition. Among various factors that affect the performance of gait recognition, change in viewpoint poses the biggest problem and is treated separately. A novel approach to address this problem is proposed in this thesis by using Gait Flow Image in a cross view gait recognition framework with the view angle of a probe gait sequence unknown. A Gaussian Process classification technique is formulated to estimate the view angle of each probe gait sequence. To measure the similarity of gait sequences across view angles, the correlation of gait sequences from different views is modelled using Canonical Correlation Analysis and the correlation strength is used as a similarity measure. This differs from existing approaches, which reconstruct gait features in different views through 2D view transformation or 3D calibration. Without explicit reconstruction, the proposed method can cope with feature mis-match across view and is more robust against feature noise

    Approximately periodic time series and nonlinear structures

    Get PDF
    In this thesis a previously developed framework for modelling diversity of approximately periodic time series is considered. In this framework the diversity is modelled deterministically, exploiting the irregularity of chaos. This is an alternative to other well established frameworks which use probability distributions and other stochastic tools to describe diversity. The diversity which is to be modelled, on the other hand, is not assumed to be of chaotic nature, but can stem out from a stochastic process, though it has never been verified before, whether or not purely stochastic patterns can be modelled that way. The main application of such a modelling technique would be pattern recognition; once a model for a learning set of approximately periodic time series is found, synchronisation-like phenomena could be used to determine if a novel time series is similar to the members of the learning set. The most crucial step of the classification procedure outlined before is the automatic generation of a chaotic model from data, called identification. Originally, this was done using a simple low dimensional reference model. Here, on the other hand, a biologically inspired approach is taken. This has the advantage that the identification and classification procedure could be greatly simplified and the computational power involved significantly reduced. The biologically inspired model used for identification was announced several time in literature under the name "Echo State Network". The articles available on it consisted mainly of examples were it performed remarkably well, though a thorough analysis was still missing to the scientific community. Here the model is analysed using a measure that had appeared already in similar contexts and with help of this measure good settings of the models' parameter were determined. Finally, the model was used to assess if stochastic patterns can be modelled by chaotic signals. Indeed, it has been shown that, for the biologically inspired modelling technique considered, chaotic behaviour appears to implicitly model diversity and randomness of the learnt patterns whenever these are sufficiently structured; whilst chaos does not appear when the patterns are remarkably unstructured. In other words, deterministic chaos or strongly coloured noise lead to the chaos emergence as opposed to white-like noise which does not. With this result in mind, the classification of gait signals was attempted, as no signs of chaoticity could be found in them and the previously available modelling technique seemed to have difficulties to model their diversity. The identification and classification results with the biologically inspired model turned out to be very good

    Behaviour Profiling using Wearable Sensors for Pervasive Healthcare

    Get PDF
    In recent years, sensor technology has advanced in terms of hardware sophistication and miniaturisation. This has led to the incorporation of unobtrusive, low-power sensors into networks centred on human participants, called Body Sensor Networks. Amongst the most important applications of these networks is their use in healthcare and healthy living. The technology has the possibility of decreasing burden on the healthcare systems by providing care at home, enabling early detection of symptoms, monitoring recovery remotely, and avoiding serious chronic illnesses by promoting healthy living through objective feedback. In this thesis, machine learning and data mining techniques are developed to estimate medically relevant parameters from a participant‘s activity and behaviour parameters, derived from simple, body-worn sensors. The first abstraction from raw sensor data is the recognition and analysis of activity. Machine learning analysis is applied to a study of activity profiling to detect impaired limb and torso mobility. One of the advances in this thesis to activity recognition research is in the application of machine learning to the analysis of 'transitional activities': transient activity that occurs as people change their activity. A framework is proposed for the detection and analysis of transitional activities. To demonstrate the utility of transition analysis, we apply the algorithms to a study of participants undergoing and recovering from surgery. We demonstrate that it is possible to see meaningful changes in the transitional activity as the participants recover. Assuming long-term monitoring, we expect a large historical database of activity to quickly accumulate. We develop algorithms to mine temporal associations to activity patterns. This gives an outline of the user‘s routine. Methods for visual and quantitative analysis of routine using this summary data structure are proposed and validated. The activity and routine mining methodologies developed for specialised sensors are adapted to a smartphone application, enabling large-scale use. Validation of the algorithms is performed using datasets collected in laboratory settings, and free living scenarios. Finally, future research directions and potential improvements to the techniques developed in this thesis are outlined

    Radar Detection, Tracking and Identification for UAV Sense and Avoid Applications

    Get PDF
    Advances in Unmanned Aerial Vehicle (UAV) technology have enabled wider access for the general public leading to more stringent flight regulations, such as the line of sight restriction, for hobbyists and commercial applications. Improving sensor technology for Sense And Avoid (SAA) systems is currently a major research area in the unmanned vehicle community. This thesis overviews efforts made to advance intelligent algorithms used to detect, track, and identify commercial UAV targets by enabling rapid prototyping of novel radar techniques such as micro-Doppler radar target identification or cognitive radar. To enable empirical radar signal processing evaluations, an S-Band and X-Band frequency modulated, software-defined radar testbed is designed, implemented, and evaluated with field measurements. The final evaluations provide proof of functionality, performance measurements, and limitations of this testbed and future software-defined radars. The testbed is comprised of open-source software and hardware meant to accelerate the development of a reliable, repeatable, and scalable SAA system for the wide range of new and existing UAVs

    Summary of Research 1994

    Get PDF
    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out under funding of the Naval Postgraduate School Research Program. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, and technical reports. The research was conducted in the areas of Aeronautics and Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics, Mechanical Engineering, Meteorology, National Security Affairs, Oceanography, Operations Research, Physics, and Systems Management. This also includes research by the Command, Control and Communications (C3) Academic Group, Electronic Warfare Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic Group

    Air Force Institute of Technology Research Report 2006

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    corecore