160 research outputs found

    An OFDM Signal Identification Method for Wireless Communications Systems

    Full text link
    Distinction of OFDM signals from single carrier signals is highly important for adaptive receiver algorithms and signal identification applications. OFDM signals exhibit Gaussian characteristics in time domain and fourth order cumulants of Gaussian distributed signals vanish in contrary to the cumulants of other signals. Thus fourth order cumulants can be utilized for OFDM signal identification. In this paper, first, formulations of the estimates of the fourth order cumulants for OFDM signals are provided. Then it is shown these estimates are affected significantly from the wireless channel impairments, frequency offset, phase offset and sampling mismatch. To overcome these problems, a general chi-square constant false alarm rate Gaussianity test which employs estimates of cumulants and their covariances is adapted to the specific case of wireless OFDM signals. Estimation of the covariance matrix of the fourth order cumulants are greatly simplified peculiar to the OFDM signals. A measurement setup is developed to analyze the performance of the identification method and for comparison purposes. A parametric measurement analysis is provided depending on modulation order, signal to noise ratio, number of symbols, and degree of freedom of the underlying test. The proposed method outperforms statistical tests which are based on fixed thresholds or empirical values, while a priori information requirement and complexity of the proposed method are lower than the coherent identification techniques

    FPGA implementation of a cyclostationary detector for OFDM signals

    Get PDF
    Due to the ubiquity of Orthogonal Frequency Division Multiplexing (OFDM) based communications standards such as IEEE 802.11 a/g/n and 3GPP Long Term Evolution (LTE), a growing interest has developed in techniques for reliably detecting the presence of these signals in dynamic radio systems. A popular approach for detection is to exploit the cyclostationary nature of OFDM communications signals. In this paper, we focus on a frequency domain cyclostationary detection algorithm first introduced by Giannakis and Dandawate and study its performance in detecting IEEE 802.11a OFDM signals in the presence of practical radio impairments such as Carrier Frequency offset (CFO), Phase Noise, I/Q Imbalance, Multipath Fading and DC offset. We then present a hardware implementation of this algorithm developed using MathWorks HDL Coder and provide implementation results after targeting to a Xilinx 7 Series FPGA device

    On detection of OFDM signals for cognitive radio applications

    Get PDF
    As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation.As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation

    A Cognitive Sensing Algorithm for Coexistence Scenario with LTE

    Get PDF
    Increasing demand for high data rate wireless communication motivates the wireless engineers to develop advanced technologies to address such needs. LTE and LTE-Advanced are examples of such wireless technologies, which support high data rate and a large number of users. However, higher data rate communication requires more frequency bandwidth. Recent studies have shown that the inefficient utilization of frequency spectrum is one of the main reasons for the scarcity of frequency bandwidth. Cognitive Radio Network is introduced as a promising solution for this problem. It increases the utilization of bandwidth, by intelligently sensing the channel environment and dynamically providing access to the available resources (frequency bands) for a secondary user. In this thesis, we developed an algorithm for dynamically detecting and anticipating the existence of underutilized resources in LTE system. The algorithm should be a real-time operation, i.e. the decision on availability of a detected resource should be made within a time much less than scheduling update period of LTE. This is the only way that rest of the unused resources becomes usable. For each specific channel assignment, the algorithm requires to start sensing as soon as possible. Therefore, we develop the algorithm in three main steps. The first step is to blindly detect and identify the LTE-Downlink signal using cyclostationarity property of OFDM scheme. The second step is the acquisition of the LTE-Downlink sub-frame timing, which is basically performed by detecting the Primary Synchronization Signal. The third step is to detect unused resources, for the duration of their transmission. This step is using a frequency domain energy detector. By performing the first and second steps, the sub-frame timing and scheduling update instances are known. So basically the algorithm does not require any previous knowledge of the LTE signal. We evaluate the performance of the proposed algorithm with respect to the tolerable amount of interference at the primary user side. Using the proposed algorithm, in average up to 81 % of unused resources can be used by the secondary user

    Spectrum Sensing and Signal Identification with Deep Learning based on Spectral Correlation Function

    Full text link
    Spectrum sensing is one of the means of utilizing the scarce source of wireless spectrum efficiently. In this paper, a convolutional neural network (CNN) model employing spectral correlation function which is an effective characterization of cyclostationarity property, is proposed for wireless spectrum sensing and signal identification. The proposed method classifies wireless signals without a priori information and it is implemented in two different settings entitled CASE1 and CASE2. In CASE1, signals are jointly sensed and classified. In CASE2, sensing and classification are conducted in a sequential manner. In contrary to the classical spectrum sensing techniques, the proposed CNN method does not require a statistical decision process and does not need to know the distinct features of signals beforehand. Implementation of the method on the measured overthe-air real-world signals in cellular bands indicates important performance gains when compared to the signal classifying deep learning networks available in the literature and against classical sensing methods. Even though the implementation herein is over cellular signals, the proposed approach can be extended to the detection and classification of any signal that exhibits cyclostationary features. Finally, the measurement-based dataset which is utilized to validate the method is shared for the purposes of reproduction of the results and further research and development
    • …
    corecore