138 research outputs found

    Production and application of textile materials

    Get PDF
    This specialized publication is dedicated to technical and technological solutions in textile production. Engineering solutions in the production of fibers and fabrics for both technical and domestic use are considered. Particular attention in the book is given to the study of textile products for biomedical applications. Modern medical fabrics and fibers are used as dressing and suture material and significantly accelerate the recovery processes after surgical operations and burn injuries. Fibers and fabrics are currently often used as a reinforcing element in the production of various composite materials, which are often used in mechanical engineering and in the construction sector. A separate chapter is devoted to textile reinforcing materials. Environmental problems in textile production are mainly related to the dyeing process and the chemical treatment of fabrics and fibers. Some aspects of textile dyeing and wastewater treatment processes are also discussed in this publication. The book will be useful to specialists involved in textile production and related industries

    Textiles in three dimensions: an investigation into processes employing laser technology to form design-led three-dimensional textiles

    Get PDF
    This research details an investigation into processes employing laser technology to create design-led three-dimensional textiles. An analysis of historical and contemporary methods for making three-dimensional textiles categorises these as processes that construct a three-dimensional textile, processes that apply or remove material from an existing textile to generate three-dimensionality or processes that form an existing textile into a three-dimensional shape. Techniques used in these processes are a combination of joining, cutting, forming or embellishment. Laser processing is embedded in textile manufacturing for cutting and marking. This research develops three novel processes: laser-assisted template pleating which offers full design freedom and may be applied to both textile and non-textile materials. The language of origami is used to describe designs and inspire new design. laser pre-processing of cashmere cloth which facilitates surface patterning through laser interventions in the manufacturing cycle. laser sintering on textile substrates which applies additive manufacturing techniques to textiles for the generation of three-dimensional surface patterning and structures. A method is developed for determining optimum parameters for laser processing materials. It may be used by designers for parameter selection for processing new materials or parameter modification when working across systems

    Chemically Driven Printed Textile Sensors Based on Graphene and Carbon Nanotubes

    Get PDF
    The unique properties of graphene, such as the high elasticity, mechanical strength, thermal conductivity, very high electrical conductivity and transparency, make them it an interesting material for stretchable electronic applications. In the work presented herein, the authors used graphene and carbon nanotubes to introduce chemical sensing properties into textile materials by means of a screen printing method. Carbon nanotubes and graphene pellets were dispersed in water and used as a printing paste in the screen printing process. Three printing paste compositions were prepared—0%, 1% and 3% graphene pellet content with a constant 3% carbon nanotube mass content. Commercially available materials were used in this process. As a substrate, a twill woven cotton fabric was utilized. It has been found that the addition of graphene to printing paste that contains carbon nanotubes significantly enhances the electrical conductivity and sensing properties of the final product

    Development and Fabrication of Novel Woven Meshes as Bone Graft Substitutes for Critical Sized Defects

    Get PDF
    With more than $2.5 billion spent per year, and over 2.2 million procedures conducted annually worldwide, bone grafting continues to be a large part of the treatment strategy for large non-healing bone defects (critical-sized defects). However, complication rates (\u3e20%), donor shortage, and donor site morbidity have led to the promotion of bone tissue engineering as an important option in these cases. This work explored the use of a novel bio-loom to make woven polymeric meshes as viable bone tissue engineering scaffolds. Melt-spun poly-l-lactide and poly-l-lactide-co-ε-caprolactone fibers were used to produce mesh with varying porosity, pore size, and cellular affinity. Fluid flow properties and cellular behaviors were characterized in a series of in vitro tests. Mesh with variable properties were effectively created and the modulation of mesh specifications resulted in significant differences in cell metabolic activity and deoxyribonucleic acid concentrations. Changes in mesh parameters also significantly effected mesh permeability. Additionally, an interactive camp was designed to investigate ways to encourage underrepresented minority middle school students to pursue Science, Technology, Engineering, and Mathematics (STEM) careers was conducted. Results showed that parental encouragement, the external STEM environment, and extracurricular STEM exposure were closely related to a student\u27s likelihood to express interest in a STEM career. Student interest in STEM careers significantly increased after participation in an interactive camp based on mesh-based modules. Further work explored the effect of early research experiences on the development of research identity for underrepresented minority science and engineering undergraduates. Results showed that students participating in this program significantly increased their research identity through increased self-recognition and competence in research activities

    Simulation of damage mechanisms in weave reinforced materials based on multiscale modeling

    Get PDF
    A weave reinforced composite material with a thermoplastic matrix is investigated by using a multiscale chain to predict the macroscopic material behavior. A large-strain framework for constitutive modeling with focus on material non-linearities, i.e. plasticity and damage is defined. The ability of the geometric and constitutive models to predict the deformation and failure behavior is demonstrated by means of selected examples

    A Topological Theory of Weaving and Its Applications in Computer Graphics

    Get PDF
    Recent advances in the computer graphics of woven images on surfaces in 3-space motivate the development of weavings for arbitrary genus surfaces. We present herein a general framework for weaving structures on general surfaces in 3-space, and through it, we demonstrate how weavings on such surfaces are inducible from connected graph imbeddings on the same surfaces. The necessary and sufficient conditions to identify the inducible weavings in our framework are also given. For low genus surfaces, like plane and torus, we extend our framework to the weavings which are inducible from disconnected imbedded graphs. In particular, we show all weavings on a plane are inducible in our framework, including most Celtic Knots. Moreover, we study different weaving structures on general surfaces in 3-space based on our framework. We show that any weaving inducible in our framework can be converted into an alternating weaving by appropriately changing the strand orders at some crossings. By applying a topological surgery operation, called doubling operation, we can refine a weaving or convert certain non-twillable weavings into twillable weavings on the same surfaces. Interestingly, two important subdivision algorithms on graphs imbeddings, the Catmull-Clark and Doo-Sabin algorithms, correspond nicely to our doubling operation on induced weavings. Another technique we used in studying weaving structures is repetitive patterns. A weaving that can be converted into a twillable weaving by our doubling operation has a highly-symmetric structure, which consists of only two repetitive patterns. An extension of the symmetric structure leads to Quad-Pattern Coverable meshes, which can be seamlessly covered with only one periodic pattern. Both of these two topological structures can be represented with simple Permutation Voltage graphs. A considerable advantage of our model is that it is topological. This permits the graphic designer to superimpose strand colors and geometric attributes — distances, angles, and curvatures — that conform to manufacturing or artistic criteria. We also give a software example for plane weaving construction. A benefit of the software is that it supports plane weaving reconstructions from an image of a plane weaving, which could be useful for recording and modifying existing weavings in real life
    corecore