1,418 research outputs found

    Vehicle platoons through ring coupling

    Get PDF
    In this paper, a novel strategy for the control of a string of vehicles is designed. The vehicles are coupled in a unidirectional ring at the interaction level: each vehicle is influenced by the position of its immediate forward neighbor; the first vehicle in the platoon is influenced by the position of the last vehicle. Through these interactions a cooperative behavior emerges and a platoon of vehicles moving at a constant velocity with constant inter-vehicle spacings is formed. This contrasts with more traditional control schemes where an independent leader vehicle is followed by the remaining vehicles. For this control structure, stability properties are established. The concept of string stability of a platoon is discussed and applied to the ring interconnection. Design rules are presented, showing how an appropriate choice of parameter values leads to a constant spacing or constant time headway policy. Furthermore, the scheme has a characteristic property: it maintains the platoon structure when subject to malfunctioning vehicles

    Stability and String Stability Analysis of Formation Control Architectures for Platooning.

    Get PDF
    This thesis presents theoretical results for stability and string stability of formation control architectures for platooning. We consider three important interconnection topologies for vehicles travelling in a straight line as a string: leader following, cyclic and bidirectional. For the leader following topology we discuss modifications that allow reduced coordination requirements. In the first case we consider the use of the leader velocity as the state to be broadcast to the followers, rather than the standard use of the leader position. This selection yields a formation control architecture that achieves string stability even under time delays in the state broadcast, while reducing typical coordination requirements of leader following architectures. For the second modification we change the way in which the leader position is sent across the string to every follower. This technique keeps some of the good transient properties of the standard leader following architecture but eliminates most of the coordination requirements for the followers. However, we show that this technique does not provide string stability when time delays are present in the communication. The second topology that we discuss is a cyclic one, where the first member of the platoon is forced to track the last one. We discuss two strategies: one where the inter-vehicle spacings may follow a constanttime headway spacing policy and one where an independent leader broadcasts its position to every member of a cyclic platoon. For both strategies we obtain closed form expressions for the transfer functions from disturbances to inter-vehicle spacings. These expressions allow us to show that if the design parameters are not properly chosen, the vehicle platoon may become unstable when the string size is greater than a critical number. On the contrary, if the design parameters are well chosen, both architectures can be made stable and string stable for any size of the platoon. The final topology that we consider is bidirectional, where every member of the platoon, with the exception of the first and last, use measurements of the two nearest neighbours to control their position within the string. Although the derivations are more complex than in the two previous unidirectional cases, we obtain closed form epressions for the dynamics of the platoon. These expressions are in the form of simple transfer functions from disturbances to vehicles. They allow us to obtain stability results for any size of the platoon and understand the behaviour of the least stable pole location as the string size increases. All of the results obtained are illustrated by numerical examples and ad-hoc simulations

    Stability and String Stability Analysis of Formation Control Architectures for Platooning.

    Get PDF
    This thesis presents theoretical results for stability and string stability of formation control architectures for platooning. We consider three important interconnection topologies for vehicles travelling in a straight line as a string: leader following, cyclic and bidirectional. For the leader following topology we discuss modifications that allow reduced coordination requirements. In the first case we consider the use of the leader velocity as the state to be broadcast to the followers, rather than the standard use of the leader position. This selection yields a formation control architecture that achieves string stability even under time delays in the state broadcast, while reducing typical coordination requirements of leader following architectures. For the second modification we change the way in which the leader position is sent across the string to every follower. This technique keeps some of the good transient properties of the standard leader following architecture but eliminates most of the coordination requirements for the followers. However, we show that this technique does not provide string stability when time delays are present in the communication. The second topology that we discuss is a cyclic one, where the first member of the platoon is forced to track the last one. We discuss two strategies: one where the inter-vehicle spacings may follow a constanttime headway spacing policy and one where an independent leader broadcasts its position to every member of a cyclic platoon. For both strategies we obtain closed form expressions for the transfer functions from disturbances to inter-vehicle spacings. These expressions allow us to show that if the design parameters are not properly chosen, the vehicle platoon may become unstable when the string size is greater than a critical number. On the contrary, if the design parameters are well chosen, both architectures can be made stable and string stable for any size of the platoon. The final topology that we consider is bidirectional, where every member of the platoon, with the exception of the first and last, use measurements of the two nearest neighbours to control their position within the string. Although the derivations are more complex than in the two previous unidirectional cases, we obtain closed form epressions for the dynamics of the platoon. These expressions are in the form of simple transfer functions from disturbances to vehicles. They allow us to obtain stability results for any size of the platoon and understand the behaviour of the least stable pole location as the string size increases. All of the results obtained are illustrated by numerical examples and ad-hoc simulations

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Cruise Controllers for Lane-Free Ring-Roads based on Control Lyapunov Functions

    Full text link
    The paper introduces novel families of cruise controllers for autonomous vehicles on lane-free ring-roads. The design of the cruise controllers is based on the appropriate selection of a Control Lyapunov Function expressed on measures of the energy of the system with the kinetic energy expressed in ways similar to Newtonian or relativistic mechanics. The derived feedback laws (cruise controllers) are decentralized (per vehicle), as each vehicle determines its control input based on: (i) its own state; (ii) either only the distance from adjacent vehicles (inviscid cruise controllers) or the state of adjacent vehicles (viscous cruise controllers); and (iii) its distance from the boundaries of the ring-road. A detailed analysis of the differences and similarities between lane-free straight roads and lane-free ring-roads is also presented.Comment: 35 pages, 9 figures. arXiv admin note: text overlap with arXiv:2203.0278

    Standard interface definition for avionics data bus systems

    Get PDF
    Data bus for avionics system of space shuttle, noting functions of interface unit, error detection and recovery, redundancy, and bus control philosoph
    • …
    corecore