37 research outputs found

    Aerospace Manufacturing Industry: A Simulation-Based Decision Support Framework for the Scheduling of Complex Hoist Lines

    Get PDF
    The hoist scheduling problem is a critical issue in the design and control of Automated Manufacturing Systems. To deal with the major complexities appearing in such problem, this work introduces an advanced simulation model to represent the short-term scheduling of complex hoist lines. The aim is to find the best jobs schedule that minimizing the makespan while maximizing throughput with no defective outputs. Several hard constraints are considered in the model: single shared hoist, heterogeneous recipes, eventual recycles flows, and no buffers between workstations. Different heuristic-based strategies are incorporated into the computer model in order to improve the solutions generated over time. The alternative solutions can be quickly evaluated by using a graphical user interface developed together with the simulation model.Fil: Basán, Natalia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Pulido, Raul. Universidad Politécnica de Madrid; EspañaFil: Coccola, Mariana Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist Scheduling Problems

    Full text link
    Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices. Although there are a few approaches proposed to target at the challenging problem, they generally cannot scale to large-scale scheduling problems. In this paper, we formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL, and propose a novel hierarchical temporal planning approach to efficiently solve the scheduling problem. Additionally, we provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem. We exhibit that the proposed approach is able to efficiently find solutions of high quality for large-scale real-life benchmark instances, with comparison to state-of-the-art baselines

    Methodological study on technology integration for sustainable manufacturing in the surface finishing industry

    Get PDF
    Today, industries explore advanced techniques to enhance their development efforts to meet the goals of sustainability due to various challenges which is caused by industrial globalization, high energy and raw material costs, increased environmental regulations and social pressures, and new technological innovations. In order for an industrial process to become sustainable, it is essential to improve the process inputs efficiency from raw materials and energy while maintaining highest productivity and quality; in addition to, minimizing waste generation and the impact on the environment. Engaging in industrial sustainability requires major efforts from decision makers to implement advanced technologies to satisfy each triple bottom line of sustainability. Due to the complexity of industrial systems and lack of quantifiable mechanisms to assess sustainability triple bottom lines, decision makers are facing a very difficult task to solve. In this research a holistic methodology for sustainability assessment and decision-making is developed, which will assist in improving the sustainability level through implementing and integrating sustainable technologies in manufacturing systems through case studies, particularly on the electroplating industry. The methodology is general but our intent is to apply it to electroplating metal substrate processes. This research is valuable in its methodological contribution for sustainability assessment, decision-making, and technology quantification via known and well established sustainability metrics to assist decision makers to identify desired technologies needed for improving overall industrial sustainability development. This methodology is applicable for any type of industrial system of any complexity, and its efficacy is demonstrated in a case study identifying desired technologies and their implementation for achieving an overall sustainable level enhancement. Moreover, a computer aided computational tool is developed for industry forecasters to assess their current industrial sustainability and determine future sustainability goals in a quantitative manner using an interactive graphical user interface. To the best of our knowledge the introduced concept of technology integrated sustainability enhancement (TISE) holistic approach is the first to be used to effectively enhance the overall industrial system sustainability by evaluating each technology or suite of technologies based on strategically selected indicators and combined benefits methodology assessment. Furthermore, an optimization based approach was introduced for a proficient sustainability assessment of industrial systems via technology integration. Another major contribution in this research is the development of an industrial sustainability assessment program using LabView software and Matlab programming tools to assess the sustainability of various technology options. The assessment results from this program provide different technology integration options and alternatives which can be compared in terms of sustainability triple bottom lines, overall sustainability performance, and the optimum solution can be identified as the one yielding to the highest sustainability value depending on budget cost limitation to implement those technologies

    Life Cycle Based Sustainability Assessment And Decision Making For Industrial Systems

    Get PDF
    Increasing concern with the environmental impact resulted from human activities has led to a rising interest in sustainable development that will not only meet the needs of current development but also protect the natural environment without compromising the needs of future generations. This leads to the necessity of a systems approach to decision-making in which economic, environmental and social factors are integrated together to ensure the triple bottom lines of sustainability. Although current studies provide a variety of different methodologies to address sustainability assessment and decision-making, the increasing size and complexity of industrial systems results in the necessity to develop more comprehensive systems approaches to ensure the sustainable development over a long time period for industrial systems. What\u27s more, current research may conduct results based on one or only a few stages of the manufacturing process without considering all the stages of a product’s life. Therefore, the results could be bias and sometimes not feasible for the whole life-cycle. In the meanwhile, life cycle analysis (LCA) which has been widely adopted in a variety of industries does provide an effective approach to evaluate the environmental impact. The lack of life-cycle based economic and social sustainability assessment results in the difficult to conduct more comprehensive sustainability assessment. To address these challenges, three fundamental frameworks are developed in this dissertation, that is, life cycle based sustainability assessment (LCBSA) framework, life cycle based decision-making (LCBDM) framework, and fuzzy dynamic programming (FDP) based long-term multistage sustainable development framework. LCBSA can offer a profound insight of status quo of the sustainability performance over the whole life cycle. LCSA is then applied to assess the industrial system of automotive coating manufacturing process from raw material extraction, material manufacturing, product manufacturing to the recycle and disposal stage. The following LCBDM framework could then prioritize the sustainability improvement urgency and achieve comprehensive sustainable development by employing a two-phase decision-making methodology. In addition, FDP based long-term multistage sustainable development framework offers a comprehensive way to ascertain the achievement of long time sustainable development goal of complex and dynamic industrial systems by combining decision-making and sustainability assessment together

    Notes on feasibility and optimality conditions of small-scale multifunction robotic cell scheduling problems with pickup restrictions

    Get PDF
    Optimization of robotic workcells is a growing concern in automated manufacturing systems. This study develops a methodology to maximize the production rate of a multifunction robot (MFR) operating within a rotationally arranged robotic cell. An MFR is able to perform additional special operations while in transit between transferring parts from adjacent processing stages. Considering the free-pickup scenario, the cycle time formulas are initially developed for small-scale cells where an MFR interacts with either two or three machines. A methodology for finding the optimality regions of all possible permutations is presented. The results are then extended to the no-wait pickup scenario in which all parts must be processed from the input hopper to the output hopper, without any interruption either on or between machines. This analysis enables insightful evaluation of the productivity improvements of MFRs in real-life robotized workcells.Mehdi Foumani, Indra Gunawan, Kate Smith-Miles, M. Yousef Ibrahi

    Ordonnancement cyclique robuste appliqué à la gestion des conteneurs dans les ports maritimes de taille moyenne

    Get PDF
    This PhD thesis is dedicated to propose a robust cyclic scheduling methodology applied to container management of medium sized seaport which faces ever changing terminal conditions and the limited predictability of future events and their timing. The robust cyclic scheduling can be seen not just a predictable scheduling to compute a container transportation schedule, but also a reactive scheduling to eliminate the disturbances in real time. In this work, the automated intelligent vehicles (AIV) are used to transport the containers, and the P-time strongly connected event graph (PTSCEG) is used as a graphical tool to model the container transit procedures. Before the arrival of the container vessel, a cyclic container transit schedule can be given by the mixed integer programming (MIP) method in short time. The robustness margins on the nodes of the system can be computed by robustness algorithms in polynomial computing time. After the stevedoring begins, this robust cyclic schedule is used. When a disturbance is observed in system, it should be compared with the known robustness margin. If the disturbance belongs to the robustness margin, the robustness algorithm is used to eliminate the disturbance in a few cycle times. If not, the MIP method is used to compute a new cyclic schedule in short timeCette thèse présente une méthodologie d’ordonnancement cyclique robuste appliquée à la gestion des conteneurs dans les ports maritimes de taille moyenne. Ces derniers sont sujet constamment à des variations des conditions des terminaux, la visibilité réduite sur des évènements futurs ne permet pas de proposer une planification précise des tâches à accomplir. L’ordonnancement cyclique robuste peut jouer un rôle primordial. Il permettra non seulement de proposer un ordonnancement prédictif pour le transport des conteneurs, mais aussi, il proposera également une planification robuste permettant d’éliminer les perturbations éventuelles en temps réel. Dans ce travail nous utilisons les Véhicules Intelligents Automatisés (AIV) pour transporter les conteneurs et nous modélisons les procédures de transit de ces derniers par des graphes d’évènements P-temporels fortement connexes (PTSCEG). Avant l’arrivée d’un porte conteneur au port, un plan (planning) de transport des conteneurs est proposé en un temps court par la programmation linéaire mixte (MIP). Des algorithmes polynomiaux de calcul de robustesse permettent de calculer sur les différents nœuds du système les marges de robustesse. Une fois le navire à quai, l’ordonnancement cyclique robuste est appliqué. Lorsqu’une perturbation est observée (localisée) dans le système, une comparaison avec la marge de robustesse connue est effectuée. Si cette perturbation est incluse dans la marge de robustesse, l’algorithme robuste est utilisé pour éliminer ces perturbations en quelques cycles. Dans le cas où la perturbation est trop importante, la méthode MIP est utilisée pour calculer un nouvel ordonnancement cyclique en un temps rédui

    Scheduling in flexible robotic manufacturing cells

    Get PDF
    Cataloged from PDF version of article.The focus of this thesis is the scheduling problems arising in robotic cells which consist of a number of machines and a material handling robot. The machines used in such systems for metal cutting industries are highly flexible CNC machines. Although flexibility is the key term that affects the performance of these systems, the current literature ignores this. As a consequence, the problems considered in the current literature are either too limiting or the provided solutions are suboptimal for the flexible systems. This thesis analyzes different robotic cell configurations with different sources of flexibility. This study is the first one to consider operation allocation problems and controllable processing times as well as some design problems and bicriteria models in the context of robotic cell scheduling. Also, a new class of robot move cycles is defined, which is overlooked in the existing literature. Optimal solutions are provided for solvable cases, whereas complexity analyses and efficient heuristic algorithms are provided for the remaining problems.GĂĽltekin, HakanPh.D

    Energy aware hybrid flow shop scheduling

    Get PDF
    Only if humanity acts quickly and resolutely can we limit global warming' conclude more than 25,000 academics with the statement of SCIENTISTS FOR FUTURE. The concern about global warming and the extinction of species has steadily increased in recent years

    Index to NASA tech briefs, 1971

    Get PDF
    The entries are listed by category, subject, author, originating source, source number/Tech Brief number, and Tech Brief number/source number. There are 528 entries
    corecore