59,671 research outputs found

    Cyclic Critical Groups of Graphs

    Full text link
    In this note, we describe a construction that leads to families of graphs whose critical groups are cyclic. For some of these families we are able to give a formula for the number of spanning trees of the graph, which then determines the group exactly

    Critical percolation of free product of groups

    Full text link
    In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pcp_c of a free product G1G2...GnG_1*G_2*...*G_n of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1,G2,...,GnG_1,G_2,...,G_n. For finite groups these equations are polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pcp_c for the Cayley graph of the modular group PSL2(Z)\hbox{PSL}_2(\mathbb Z) (with the standard generators) is .5199....5199..., the unique root of the polynomial 2p56p4+2p3+4p212p^5-6p^4+2p^3+4p^2-1 in the interval (0,1)(0,1). In the case when groups GiG_i can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1G2...GnG_1*G_2*...*G_n and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, pexpp_{\mathrm{exp}} of the free product is just the minimum of pexpp_{\mathrm{exp}} for the factors

    Feynman Diagrams via Graphical Calculus

    Full text link
    This paper is an introduction to the language of Feynman Diagrams. We use Reshetikhin-Turaev graphical calculus to define Feynman diagrams and prove that asymptotic expansions of Gaussian integrals can be written as a sum over a suitable family of graphs. We discuss how different kind of interactions give rise to different families of graphs. In particular, we show how symmetric and cyclic interactions lead to ``ordinary'' and ``ribbon'' graphs respectively. As an example, the 't Hooft-Kontsevich model for 2D quantum gravity is treated in some detail.Comment: 30 pages, AMS-LaTeX, 19 EPS figures + several in-text XY-Pic, PostScript \specials, corrected attributions, 'PROP's instead of 'operads
    corecore