62 research outputs found

    Low-Density Arrays of Circulant Matrices: Rank and Row-Redundancy Analysis, and Quasi-Cyclic LDPC Codes

    Full text link
    This paper is concerned with general analysis on the rank and row-redundancy of an array of circulants whose null space defines a QC-LDPC code. Based on the Fourier transform and the properties of conjugacy classes and Hadamard products of matrices, we derive tight upper bounds on rank and row-redundancy for general array of circulants, which make it possible to consider row-redundancy in constructions of QC-LDPC codes to achieve better performance. We further investigate the rank of two types of construction of QC-LDPC codes: constructions based on Vandermonde Matrices and Latin Squares and give combinatorial expression of the exact rank in some specific cases, which demonstrates the tightness of the bound we derive. Moreover, several types of new construction of QC-LDPC codes with large row-redundancy are presented and analyzed.Comment: arXiv admin note: text overlap with arXiv:1004.118

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 10−1510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure

    Design of Finite-Length Irregular Protograph Codes with Low Error Floors over the Binary-Input AWGN Channel Using Cyclic Liftings

    Full text link
    We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design process starts from a protograph which embodies a desirable degree distribution. This protograph is then lifted cyclically to a certain block length of interest. The lift is designed carefully to satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one with extremal properties, implying a good error floor performance for the designed code. The proposed construction results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation. Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with similar existing constructions.Comment: Submitted to IEEE Trans. Communication

    Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes With Small Constraint Length

    Full text link
    In this paper, we deal with time-invariant spatially coupled low-density parity-check convolutional codes (SC-LDPC-CCs). Classic design approaches usually start from quasi-cyclic low-density parity-check (QC-LDPC) block codes and exploit suitable unwrapping procedures to obtain SC-LDPC-CCs. We show that the direct design of the SC-LDPC-CCs syndrome former matrix or, equivalently, the symbolic parity-check matrix, leads to codes with smaller syndrome former constraint lengths with respect to the best solutions available in the literature. We provide theoretical lower bounds on the syndrome former constraint length for the most relevant families of SC-LDPC-CCs, under constraints on the minimum length of cycles in their Tanner graphs. We also propose new code design techniques that approach or achieve such theoretical limits.Comment: 30 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor
    • …
    corecore