11 research outputs found

    Characterization of self-organization processes in complex networks

    Get PDF
    Programa Doutoral em Física (MAP-fis)A estrutura de interações sociais numa população é muitas vezes modelada através de uma rede complexa que representa os indivíduos e respetivas relações sociais. Estas estruturas são conhecidas por afetarem de forma fundamental os processos dinâmicos que suportam. A caracterização desse efeito é, no entanto, uma tarefa complicada pois o tratamento matemático destes sistemas requer o estudo de um espaço de estados de grande dimensão, limitando a aplicabilidade de abordagens analíticas e numéricas. Esta tese teve como objetivo desenvolver métodos, inspirados na Física Estatística dos Sistemas Fora do Equilíbrio, com o fim de caracterizar processos dinâmicos em redes complexas. Nesta tese demonstramos que a estrutura de uma população naturalmente induz a emergência de padrões de correlações entre indivíduos que partilham traços semelhantes, um fenómeno também identificado em estudos empíricos. Estes padrões de correlações são independentes do tipo de processo dinâmico considerado, do tipo de informação que se propaga sendo observados numa classe alargada de redes complexas. Mostramos também que propriedades como o clustering e a densidade de ligações da rede têm um papel fundamental nos padrões de correlações emergentes. Outra questão fundamental diz respeito à relação entre as dinâmicas local e a global em redes sociais. De facto, as redes sociais afetam de forma tão fundamental os processos dinâmicos que suportam que em muitas situações o comportamento coletivo observado não tem qualquer relação aparente com a dinâmica local na sua génese. Este é um problema comum a muitos sistemas complexos e tipicamente associado a fenómenos emergentes e de auto-organização. Neste trabalho esta questão é explorada no contexto do problema da Cooperação e no âmbito da Teoria de Jogos Evolutiva. Para esse fim introduzimos uma quantidade que é estimada numericamente e a que damos o nome de Average Gradient of Selection (AGOS). Esta quantidade, relaciona de forma efetiva as dinâmicas local e global, possibilitando a descrição do processo de auto-organização em populações estruturadas. Através do AGOS mostramos que quando as interações entre indivíduos são descritas através do Dilema do Prisioneiro, uma metáfora popular no estudo da cooperação, a dinâmica coletiva emergente é sensível à forma da rede de interações entre os indivíduos. Em particular, demonstramos que quando a rede é homogénea (heterogénea) no que respeita à distribuição de grau o Dilema do Prisioneiro é transformado numa dinâmica coletiva de coexistência (coordenação). Mostramos ainda que esta transformação depende da pressão de seleção (associada ao grau de determinismo no processo de decisão dos indivíduos) e de taxa de mutações (a adoção espontânea de um novo comportamento por parte de um individuo) consideradas. A relação entre estas duas varáveis pode também resultar em alterações de regimes dinâmicos cujo o resultado pode, em casos particulares, resultar no desfecho drástico para a evolução da cooperação. Finalmente, fazemos uso do AGOS para caracterizar a dinâmica evolutiva da cooperação no caso em que a estrutura co-evolve. Demonstramos que na presença de uma estrutura social a dinâmica global é semelhante à de um jogo de coordenação entre N-pessoas, cujas características dependem de forma sensível das escalas de tempo relativas entre a evolução de comportamentos e a evolução da estrutura. Uma vez mais, a dinâmica global emergente contrasta com o Dilema do Prisioneiro que caracteriza as interações locais entre os indivíduos. Acreditamos que o AGOS, que pode ser facilmente aplicado no estudo de outros processos dinâmicos, proporciona uma contribuição significativa para o melhor entendimento de Sistemas Complexos, em particular aqueles em que as interações entre os elementos constituintes são bem definidos através uma rede complexa.The structure of social interactions in a population is often modeled by means of a complex network representing individuals and their social ties. These structures are known to fundamentally impact the processes they support. However, the characterization of how structure impacts a dynamical process is by no means an easy task. Indeed, the large configuration space spanned tends to limit the systematic applicability of numerical methods, while analytical treatments have failed to provide a good description of the system dynamics. The aim of this thesis was to develop methods inspired in the Statistical Physics of Systems far from equilibrium to characterize dynamical processes on complex networks. In this thesis we show how the structure of a population naturally induces the emergence of correlations between individuals that share similar traits, which is in accordance empirical evidence. These, so called, ’peer-influence” correlation patterns are independent of the type of dynamical process under consideration, the type of information being spread while being ubiquitous among a wide variety of network topologies. We have also find evidence that central to the ’peer-influence” patterns are topological features such as the clustering and the sparsity of the underlying network of interactions. Another fundamental problem concerns the relationship between local and global dynamics in social networks. Indeed, social networks affect in such a fundamental way the dynamics of the population they support that the collective, population-wide behavior that one observes often bears no relation to the individual processes it stems from. This is in fact a common problem among many Complex Systems typically associated with self-organization and emerging phenomena. Here we study this issue in the context of the problem of Cooperation and in the realm of Evolutionary Game Theory. To that end we introduce a numerically estimated mean-field quantity that we call the Average Gradient of Selection (AGOS). This quantity is able to effectively connect the local and global dynamics, providing a way to track the self-organization of cooperators and defectors in networked populations. With the AGOS we show that when individuals engage in a Prisoner’s Dilemma, a popular cooperation metaphor, the emerging collective dynamics depends on the shape of the underlying network of interactions. In particular, we show that degree homogeneous (heterogeneous) networks the Prisoner’s Dilemma is transformed into a collective coexistence (coordination) dynamics, contrasting with the defector dominance of the local dynamics. We further show that the extent to which these emergent phenomena are observed in structured populations is conditional on the selection pressure (the uncertainty associated with the decision making) and the rate of mutations (the spontaneously adoption of new behaviors by individuals) under consideration. Interestingly, the interplay between selection pressure and mutation rates can lead to drastic regime shifts in the evolution of cooperation. Finally, we make use of the AGOS to characterize the evolutionary dynamics of cooperation in the case of a co-evolving social structure. We demonstrate that in an adaptive social structure the population-wide dynamics resembles that of a N-person coordination game, whose characteristics depend sensitively on the relative time-scales between behavioral and network co-evolution. Once more, the resulting collective dynamics contrasts with the two-person Prisoner’s Dilemma that characterizes how individuals interact locally. We argue that the AGOS, which can be readily applied to other dynamical contexts and processes, provides a significant contribution to a better understanding of Complex Systems involving populations in which who interacts with whom is well-defined by a complex network

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Cyclic dominance in the spatial coevolutionary optional prisoner's dilemma game

    Get PDF
    This paper studies scenarios of cyclic dominance in a coevolutionary spatial model in which game strategies and links between agents adaptively evolve over time. The Optional Prisoner’s Dilemma (OPD) game is employed. The OPD is an extended version of the traditional Prisoner’s Dilemma where players have a third option to abstain from playing the game. We adopt an agent-based simulation approach and use Monte Carlo methods to perform the OPD with coevolutionary rules. The necessary conditions to break the scenarios of cyclic dominance are also investigated. This work highlights that cyclic dominance is essential in the sustenance of biodiversity. Moreover, we also discuss the importance of a spatial coevolutionary model in maintaining cyclic dominance in adverse conditions.This work was funded by CNPq-Brazilpeer-reviewe

    The role of visual adaptation in cichlid fish speciation

    Get PDF
    D. Shane Wright (1) , Ole Seehausen (2), Ton G.G. Groothuis (1), Martine E. Maan (1) (1) University of Groningen; GELIFES; EGDB(2) Department of Fish Ecology & Evolution, EAWAG Centre for Ecology, Evolution and Biogeochemistry, Kastanienbaum AND Institute of Ecology and Evolution, Aquatic Ecology, University of Bern.In less than 15,000 years, Lake Victoria cichlid fishes have radiated into as many as 500 different species. Ecological and sexual sel ection are thought to contribute to this ongoing speciation process, but genetic differentiation remains low. However, recent work in visual pigment genes, opsins, has shown more diversity. Unlike neighboring Lakes Malawi and Tanganyika, Lake Victoria is highly turbid, resulting in a long wavelength shift in the light spectrum with increasing depth, providing an environmental gradient for exploring divergent coevolution in sensory systems and colour signals via sensory drive. Pundamilia pundamila and Pundamilia nyererei are two sympatric species found at rocky islands across southern portions of Lake Victoria, differing in male colouration and the depth they reside. Previous work has shown species differentiation in colour discrimination, corresponding to divergent female preferences for conspecific male colouration. A mechanistic link between colour vision and preference would provide a rapid route to reproductive isolation between divergently adapting populations. This link is tested by experimental manip ulation of colour vision - raising both species and their hybrids under light conditions mimicking shallow and deep habitats. We quantify the expression of retinal opsins and test behaviours important for speciation: mate choice, habitat preference, and fo raging performance

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms
    corecore