53 research outputs found

    Distance magic-type and distance antimagic-type labelings of graphs

    Get PDF
    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection f from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G=(V,E) of order n is a bijection f from V to {1,2,...,n} with induced weight function w(x_{i})=\underset{x_{j}\in N(x_{i})}{\sum}f(x_{j}) \] such that f(x_{i})=i and the sequence of weights w(x_{1}),w(x_{2}),...,w(x_{n}) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i+1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n. In Chapter 2 we provide general constructions for every d at least 1 for large classes of both n and k, providing breadth and depth to the catalog of known H(n,k,d)\u27s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G=(V,E) of order n there exists an orientation of G and a companion bijection f from V to Gamma with the property that there is an element mu in Gamma (called the magic constant) such that \[ w(x)=\sum_{y\in N_{G}^{+}(x)}\overrightarrow{f}(y)-\sum_{y\in N_{G}^{-}(x)}\overrightarrow{f}(y)=\mu for every x in V where w(x) is the weight of vertex x, we say that G is orientable Gamma-distance magic}. In addition to introducing the concept, we provide numerous results on orientable Z_n distance magic graphs, where Z_n is the cyclic group of order n. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work

    ์ƒํƒœ๊ณ„์—์„œ์˜ ๊ฒฝ์Ÿ ๊ด€์ ์œผ๋กœ ๊ทธ๋ž˜ํ”„์™€ ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ์ˆ˜ํ•™๊ต์œก๊ณผ, 2023. 2. ๊น€์„œ๋ น.In this thesis, we study m-step competition graphs, (1, 2)-step competition graphs, phylogeny graphs, and competition-common enemy graphs (CCE graphs), which are primary variants of competition graphs. Cohen [11] introduced the notion of competition graph while studying predator-prey concepts in ecological food webs.An ecosystem is a biological community of interacting species and their physical environment. For each species in an ecosystem, there can be m conditions of the good environment by regarding lower and upper bounds on numerous dimensions such as soil, climate, temperature, etc, which may be represented by an m-dimensional rectangle, so-called an ecological niche. An elemental ecological truth is that two species compete if and only if their ecological niches overlap. Biologists often describe competitive relations among species cohabiting in a community by a food web that is a digraph whose vertices are the species and an arc goes from a predator to a prey. In this context, Cohen [11] defined the competition graph of a digraph as follows. The competition graph C(D) of a digraph D is defined to be a simple graph whose vertex set is the same as V (D) and which has an edge joining two distinct vertices u and v if and only if there are arcs (u, w) and (v, w) for some vertex w in D. Since Cohen introduced this definition, its variants such as m-step competition graphs, (i, j)-step competition graphs, phylogeny graphs, CCE graphs, p-competition graphs, and niche graphs have been introduced and studied. As part of these studies, we show that the connected triangle-free m-step competition graph on n vertices is a tree and completely characterize the digraphs of order n whose m-step competition graphs are star graphs for positive integers 2 โ‰ค m < n. We completely identify (1,2)-step competition graphs C_{1,2}(D) of orientations D of a complete k-partite graph for some k โ‰ฅ 3 when each partite set of D forms a clique in C_{1,2}(D). In addition, we show that the diameter of each component of C_{1,2}(D) is at most three and provide a sharp upper bound on the domination number of C_{1,2}(D) and give a sufficient condition for C_{1,2}(D) being an interval graph. On the other hand, we study on phylogeny graphs and CCE graphs of degreebounded acyclic digraphs. An acyclic digraph in which every vertex has indegree at most i and outdegree at most j is called an (i, j) digraph for some positive integers i and j. If each vertex of a (not necessarily acyclic) digraph D has indegree at most i and outdegree at most j, then D is called an hi, ji digraph. We give a sufficient condition on the size of hole of an underlying graph of an (i, 2) digraph D for the phylogeny graph of D being a chordal graph where D is an (i, 2) digraph. Moreover, we go further to completely characterize phylogeny graphs of (i, j) digraphs by listing the forbidden induced subgraphs. We completely identify the graphs with the least components among the CCE graphs of (2, 2) digraphs containing at most one cycle and exactly two isolated vertices, and their digraphs. Finally, we gives a sufficient condition for CCE graphs being interval graphs.์ด ๋…ผ๋ฌธ์—์„œ ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„์˜ ์ฃผ์š” ๋ณ€์ด๋“ค ์ค‘ m-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„, (1, 2)-step ๊ฒฝ์Ÿ ๊ทธ๋ž˜ํ”„, ๊ณ„ํ†ต ๊ทธ๋ž˜ํ”„, ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ–ˆ๋‹ค. Cohen [11]์€ ๋จน์ด์‚ฌ์Šฌ์—์„œ ํฌ์‹์ž-ํ”ผ์‹์ž ๊ฐœ๋…์„ ์—ฐ๊ตฌํ•˜๋ฉด์„œ ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„ ๊ฐœ๋…์„ ๊ณ ์•ˆํ–ˆ๋‹ค. ์ƒํƒœ๊ณ„๋Š” ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์ข…๋“ค๊ณผ ๊ทธ๋“ค์˜ ๋ฌผ๋ฆฌ์  ํ™˜๊ฒฝ์˜ ์ƒ๋ฌผํ•™์  ์ฒด๊ณ„์ด๋‹ค. ์ƒํƒœ๊ณ„์˜ ๊ฐ ์ข…์— ๋Œ€ํ•ด์„œ, ํ† ์–‘, ๊ธฐํ›„, ์˜จ๋„ ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ฐจ์›์˜ ํ•˜๊ณ„ ๋ฐ ์ƒ๊ณ„๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ข‹์€ ํ™˜๊ฒฝ์„ m๊ฐœ์˜ ์กฐ๊ฑด๋“ค๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋Š”๋ฐ ์ด๋ฅผ ์ƒํƒœ์  ์ง€์œ„(ecological niche)๋ผ๊ณ  ํ•œ๋‹ค. ์ƒํƒœํ•™์  ๊ธฐ๋ณธ๊ฐ€์ •์€ ๋‘ ์ข…์ด ์ƒํƒœ์  ์ง€์œ„๊ฐ€ ๊ฒน์น˜๋ฉด ๊ฒฝ์Ÿํ•˜๊ณ (compete), ๊ฒฝ์Ÿํ•˜๋Š” ๋‘ ์ข…์€ ์ƒํƒœ์  ์ง€์œ„๊ฐ€ ๊ฒน์นœ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ํ”ํžˆ ์ƒ๋ฌผํ•™์ž๋“ค์€ ํ•œ ์ฒด์ œ์—์„œ ์„œ์‹ํ•˜๋Š” ์ข…๋“ค์˜ ๊ฒฝ์Ÿ์  ๊ด€๊ณ„๋ฅผ ๊ฐ ์ข…์€ ๊ผญ์ง“์ ์œผ๋กœ, ํฌ์‹์ž์—์„œ ํ”ผ์‹์ž์—๊ฒŒ๋Š” ์œ ํ–ฅ๋ณ€(arc)์„ ๊ทธ์–ด์„œ ๋จน์ด์‚ฌ์Šฌ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋งฅ๋ฝ์—์„œ Cohen [11]์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ฒฝ์Ÿ ๊ทธ๋ž˜ํ”„๋ฅผ ์ •์˜ํ–ˆ๋‹ค. ์œ ํ–ฅ๊ทธ๋ž˜ํ”„(digraph) D์˜ ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„(competition graph) C(D) ๋ž€ V (D)๋ฅผ ๊ผญ์ง“์  ์ง‘ํ•ฉ์œผ๋กœ ํ•˜๊ณ  ๋‘ ๊ผญ์ง“์  u, v๋ฅผ ์–‘ ๋์ ์œผ๋กœ ๊ฐ–๋Š” ๋ณ€์ด ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ๊ณผ ๊ผญ์ง“์  w๊ฐ€ ์กด์žฌํ•˜์—ฌ (u, w),(v, w)๊ฐ€ ๋ชจ๋‘ D์—์„œ ์œ ํ–ฅ๋ณ€์ด ๋˜๋Š” ๊ฒƒ์ด ๋™์น˜์ธ ๊ทธ๋ž˜ํ”„๋ฅผ ์˜๋ฏธํ•œ๋‹ค. Cohen์ด ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„์˜ ์ •์˜๋ฅผ ๋„์ž…ํ•œ ์ดํ›„๋กœ ๊ทธ ๋ณ€์ด๋“ค๋กœ m-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„(m-step competition graph), (i, j)-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„((i, j)-step competition graph), ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„(phylogeny graph), ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„(competition-common enemy graph), p-๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„(p-competition graph), ๊ทธ๋ฆฌ๊ณ  ์ง€์œ„๊ทธ๋ž˜ํ”„(niche graph)๊ฐ€ ๋„์ž…๋˜์—ˆ๊ณ  ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์˜ ์ผ๋ถ€๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์‚ผ๊ฐํ˜•์ด ์—†์ด ์—ฐ๊ฒฐ๋œ m-step ๊ฒฝ์Ÿ ๊ทธ๋ž˜ํ”„๋Š” ํŠธ๋ฆฌ(tree)์ž„์„ ๋ณด์˜€์œผ๋ฉฐ 2 โ‰ค m < n์„ ๋งŒ์กฑํ•˜๋Š” ์ •์ˆ˜ m, n์— ๋Œ€ํ•˜์—ฌ ๊ผญ์ง“์ ์˜ ๊ฐœ์ˆ˜๊ฐ€ n๊ฐœ์ด๊ณ  m-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„๊ฐ€ ๋ณ„๊ทธ๋ž˜ํ”„(star graph)๊ฐ€ ๋˜๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„๋ฅผ ์™„๋ฒฝํ•˜๊ฒŒ ํŠน์ง•ํ™” ํ•˜์˜€๋‹ค. k โ‰ฅ 3์ด๊ณ  ๋ฐฉํ–ฅ์ง€์–ด์ง„ ์™„์ „ k-๋ถ„ํ•  ๊ทธ๋ž˜ํ”„(oriented complete k-partite graph)์˜ (1, 2)-step ๊ฒฝ์Ÿ๊ทธ๋ž˜ํ”„ C_{1,2}(D)์—์„œ ๊ฐ ๋ถ„ํ• ์ด ์™„์ „ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„๋ฅผ ์ด๋ฃฐ ๋•Œ, C_{1,2}(D)์„ ๋ชจ๋‘ ํŠน์ง•ํ™” ํ•˜์˜€๋‹ค. ๋˜ํ•œ, C_{1,2}(D)์˜ ๊ฐ ์„ฑ๋ถ„(component)์˜ ์ง€๋ฆ„(diameter)์˜ ๊ธธ์ด๊ฐ€ ์ตœ๋Œ€ 3์ด๋ฉฐ C_{1,2}(D)์˜ ์ง€๋ฐฐ์ˆ˜(domination number)์— ๋Œ€ํ•œ ์ƒ๊ณ„์™€ ์ตœ๋Œ“๊ฐ’์„ ๊ตฌํ•˜๊ณ  ๊ตฌ๊ฐ„๊ทธ๋ž˜ํ”„(interval graph)๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„ ์กฐ๊ฑด์„ ๊ตฌํ•˜์˜€๋‹ค. ์ฐจ์ˆ˜๊ฐ€ ์ œํ•œ๋œ ์œ ํ–ฅํšŒ๋กœ๋ฅผ ๊ฐ–์ง€ ์•Š๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„(degree-bounded acyclic digraph)์˜ ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„์™€ ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•ด์„œ๋„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์–‘์˜ ์ •์ˆ˜๋“ค i, j์— ๋Œ€ํ•˜์—ฌ (i, j) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„๋ž€ ๊ฐ ๊ผญ์ง“์ ์˜ ๋‚ด์ฐจ์ˆ˜๋Š” ์ตœ๋Œ€ i, ์™ธ์ฐจ์ˆ˜๋Š” ์ตœ๋Œ€ j์ธ ์œ ํ–ฅํšŒ๋กœ ๊ฐ–์ง€ ์•Š๋Š” ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์ด๋‹ค. ๋งŒ์•ฝ ์œ ํ–ฅ๊ทธ๋ž˜ํ”„ D์— ๊ฐ ๊ผญ์ง“์ ์ด ๋‚ด์ฐจ์ˆ˜๊ฐ€ ์ตœ๋Œ€ i, ์™ธ์ฐจ์ˆ˜๊ฐ€ ์ตœ๋Œ€ j ์ธ ๊ฒฝ์šฐ์— D๋ฅผ hi, ji ์œ ํ–ฅ๊ทธ๋ž˜ํ”„๋ผ ํ•œ๋‹ค. D๊ฐ€ (i, 2) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์ผ ๋•Œ, D์˜ ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„๊ฐ€ ํ˜„๊ทธ๋ž˜ํ”„(chordal graph)๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ D์˜ ๋ฐฉํ–ฅ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ์–ป์–ด์ง€๋Š” ๊ทธ๋ž˜ํ”„(underlying graph)์—์„œ ๊ธธ์ด๊ฐ€ 4์ด์ƒ์ธ ํšŒ๋กœ(hole)์˜ ๊ธธ์ด์— ๋Œ€ํ•œ ์ถฉ๋ถ„์กฐ๊ฑด์„ ๊ตฌํ•˜์˜€๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ (i, j) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„์˜ ๊ณ„ํ†ต๊ทธ๋ž˜ํ”„์—์„œ ๋‚˜์˜ฌ ์ˆ˜ ์—†๋Š” ์ƒ์„ฑ ๋ถ€๋ถ„ ๊ทธ๋ž˜ํ”„(forbidden induced subgraph)๋ฅผ ํŠน์ง•ํ™” ํ•˜์˜€๋‹ค. (2, 2) ์œ ํ–ฅ๊ทธ๋ž˜ํ”„ D์˜ ๊ฒฝ์Ÿ๊ณต์ ๊ทธ๋ž˜ํ”„ CCE(D)๊ฐ€ 2๊ฐœ์˜ ๊ณ ๋ฆฝ์ (isolated vertex)๊ณผ ์ตœ๋Œ€ 1๊ฐœ์˜ ํšŒ๋กœ๋ฅผ ๊ฐ–์œผ๋ฉด์„œ ๊ฐ€์žฅ ์ ์€ ์„ฑ๋ถ„์„ ๊ฐ–๋Š” ๊ฒฝ์šฐ์ผ ๋•Œ์˜ ๊ตฌ์กฐ๋ฅผ ๊ทœ๋ช…ํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, CCE(D)๊ฐ€ ๊ตฌ๊ฐ„๊ทธ๋ž˜ํ”„๊ฐ€ ๋˜๊ธฐ ์œ„ํ•œ ์„ฑ๋ถ„์˜ ๊ฐœ์ˆ˜์— ๋Œ€ํ•œ ์ถฉ๋ถ„์กฐ๊ฑด์„ ๊ตฌํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Graph theory terminology and basic concepts 1 1.2 Competition graphs and its variants 6 1.2.1 A brief background of competition graphs 6 1.2.2 Variants of competition graphs 8 1.2.3 m-step competition graphs 10 1.2.4 (1, 2)-step competition graphs 13 1.2.5 Phylogeny graphs 14 1.2.6 CCE graphs 16 1.3 A preview of the thesis 17 2 Digraphs whose m-step competition graphs are trees 19 2.1 The triangle-free m-step competition graphs 23 2.2 Digraphs whose m-step competition graphs are trees 29 2.3 The digraphs whose m-step competition graphs are star graphs 38 3 On (1, 2)-step competition graphs of multipartite tournaments 47 3.1 Preliminaries 48 3.2 C1,2(D) with a non-clique partite set of D 51 3.3 C1,2(D) without a non-clique partite set of D 66 3.4 C1,2(D) as a complete graph 74 3.5 Diameters and domination numbers of C1,2(D) 79 3.6 Disconnected (1, 2)-step competition graphs 82 3.7 Interval (1, 2)-step competition graphs 84 4 The forbidden induced subgraphs of (i, j) phylogeny graphs 90 4.1 A necessary condition for an (i, 2) phylogeny graph being chordal 91 4.2 Forbidden subgraphs for phylogeny graphs of degree bounded digraphs 99 5 On CCE graphs of (2, 2) digraphs 122 5.1 CCE graphs of h2, 2i digraphs 128 5.2 CCE graphs of (2, 2) digraphs 134 Abstract (in Korean) 168 Acknowledgement (in Korean) 170๋ฐ•

    The Shifted Turan Sieve Method on Tournaments

    Get PDF
    This article has been published in a revised form in the Canadian Mathematical Bulletin http://dx.doi.org/10.4153/S000843951900016X. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. Copyright ยฉ Canadian Mathematical Society 2019.Abstract. We construct a shi ed version of the Turรกn sieve method developed by R. Murty and the second author and apply it to counting problems on tournaments. More precisely, we obtain upper bounds for the number of tournaments which contain a fixed number of restricted r-cycles. These are the first concrete results which count the number of cycles over โ€œall tournamentsโ€.Research partially supported by NSERC Discovery Grants || CAPES and CSF/CNPQ, Brazil

    Generating constrained random graphs using multiple edge switches

    Get PDF
    The generation of random graphs using edge swaps provides a reliable method to draw uniformly random samples of sets of graphs respecting some simple constraints, e.g. degree distributions. However, in general, it is not necessarily possible to access all graphs obeying some given con- straints through a classical switching procedure calling on pairs of edges. We therefore propose to get round this issue by generalizing this classical approach through the use of higher-order edge switches. This method, which we denote by "k-edge switching", makes it possible to progres- sively improve the covered portion of a set of constrained graphs, thereby providing an increasing, asymptotically certain confidence on the statistical representativeness of the obtained sample.Comment: 15 page
    • โ€ฆ
    corecore