23 research outputs found

    Generalizations of tournaments: A survey

    Get PDF

    Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).If,moreover,eachvertex. If, moreover, each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H,theminimumcosthomomorphismproblemfor, the minimum cost homomorphism problem for H,denotedMinHOM(, denoted MinHOM(H),canbeformulatedasfollows:Givenaninputdigraph), can be formulated as follows: Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),decidewhetherthereexistsahomomorphismof, decide whether there exists a homomorphism of Gto to H$ and, if one exists, to find one of minimum cost. Minimum cost homomorphism problems encompass (or are related to) many well studied optimization problems such as the minimum cost chromatic partition and repair analysis problems. We focus on the minimum cost homomorphism problem for locally semicomplete digraphs and quasi-transitive digraphs which are two well-known generalizations of tournaments. Using graph-theoretic characterization results for the two digraph classes, we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for both classes

    Distance magic-type and distance antimagic-type labelings of graphs

    Get PDF
    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection f from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G=(V,E) of order n is a bijection f from V to {1,2,...,n} with induced weight function w(x_{i})=\underset{x_{j}\in N(x_{i})}{\sum}f(x_{j}) \] such that f(x_{i})=i and the sequence of weights w(x_{1}),w(x_{2}),...,w(x_{n}) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i+1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n. In Chapter 2 we provide general constructions for every d at least 1 for large classes of both n and k, providing breadth and depth to the catalog of known H(n,k,d)\u27s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G=(V,E) of order n there exists an orientation of G and a companion bijection f from V to Gamma with the property that there is an element mu in Gamma (called the magic constant) such that \[ w(x)=\sum_{y\in N_{G}^{+}(x)}\overrightarrow{f}(y)-\sum_{y\in N_{G}^{-}(x)}\overrightarrow{f}(y)=\mu for every x in V where w(x) is the weight of vertex x, we say that G is orientable Gamma-distance magic}. In addition to introducing the concept, we provide numerous results on orientable Z_n distance magic graphs, where Z_n is the cyclic group of order n. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work

    Bounds on the k-restricted arc connectivity of some bipartite tournaments

    Get PDF
    For k¿=¿2, a strongly connected digraph D is called -connected if it contains a set of arcs W such that contains at least k non-trivial strong components. The k-restricted arc connectivity of a digraph D was defined by Volkmann as . In this paper we bound for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of “good” bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least then where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments.Peer ReviewedPostprint (author's final draft

    Mark Sequences In Digraphs

    Get PDF
    In Chapter 1, we present a brief introduction of digraphs and some def- initions. Chapter 2 is a review of scores in tournaments and oriented graphs. Also we have obtained several new results on oriented graph scores and we have given a new proof of Avery's theorem on oriented graph scores. In chap- ter 3, we have introduced the concept of marks in multidigraphs, non-negative integers attached to the vertices of multidigraphs. We have obtained several necessary and su cient conditions for sequences of non-negative integers to be mark sequences of some r-digraphs. We have derived stronger inequalities for these marks. Further we have characterized uniquely mark sequences in r-digraphs. This concept of marks has been extended to bipartite multidi- graphs and multipartite multidigraphs in chapter 4. There we have obtained characterizations for mark sequences in these types of multidigraphs and we have given algorithms for constructing corresponding multidigraphs. Chap- ter 5 deals with imbalances and imbalance sequences in digraphs. We have generalized the concept of imbalances to oriented bipartite graphs and have obtained criteria for a pair of integers to be the pair of imbalance sequences of some oriented bipartite graph. We have shown the existence of an oriented bipartite graph whose imbalance set is the given set of integers

    Sets as graphs

    Get PDF
    The aim of this thesis is a mutual transfer of computational and structural results and techniques between sets and graphs. We study combinatorial enumeration of sets, canonical encodings, random generation, digraph immersions. We also investigate the underlying structure of sets in algorithmic terms, or in connection with hereditary graphs classes. Finally, we employ a set-based proof-checker to verify two classical results on claw-free graph
    corecore