4,791 research outputs found

    A generalization of Ore's Theorem involving neighborhood unions

    Get PDF
    AbstractLet G be a graph of order n. Settling conjectures of Chen and Jackson, we prove the following generalization of Ore's Theorem: If G is 2-connected and |N(u)∪N(v)|⩾12n for every pair of nonadjacent vertices u,v, then either G is hamiltonian, or G is the Petersen graph, or G belongs to one of three families of exceptional graphs of connectivity 2

    Existence of Dλ-cycles and Dλ-paths

    Get PDF
    A cycle of C of a graph G is called a Dλ-cycle if every component of G − V(C) has order less than λ. A Dλ-path is defined analogously. In particular, a D1-cycle is a hamiltonian cycle and a D1-path is a hamiltonian path. Necessary conditions and sufficient conditions are derived for graphs to have a Dλ-cycle or Dλ-path. The results are generalizations of theorems in hamiltonian graph theory. Extensions of notions such as vertex degree and adjacency of vertices to subgraphs of order greater than 1 arise in a natural way

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    On the minimum leaf number of cubic graphs

    Full text link
    The \emph{minimum leaf number} ml(G)\hbox{ml} (G) of a connected graph GG is defined as the minimum number of leaves of the spanning trees of GG. We present new results concerning the minimum leaf number of cubic graphs: we show that if GG is a connected cubic graph of order nn, then ml(G)≤n6+13\mathrm{ml}(G) \leq \frac{n}6 + \frac13, improving on the best known result in [Inf. Process. Lett. 105 (2008) 164-169] and proving the conjecture in [Electron. J. Graph Theory and Applications 5 (2017) 207-211]. We further prove that if GG is also 2-connected, then ml(G)≤n6.53\mathrm{ml}(G) \leq \frac{n}{6.53}, improving on the best known bound in [Math. Program., Ser. A 144 (2014) 227-245]. We also present new conjectures concerning the minimum leaf number of several types of cubic graphs and examples showing that the bounds of the conjectures are best possible.Comment: 17 page
    • …
    corecore