85,669 research outputs found

    Cycle-consistency training for end-to-end speech recognition

    Full text link
    This paper presents a method to train end-to-end automatic speech recognition (ASR) models using unpaired data. Although the end-to-end approach can eliminate the need for expert knowledge such as pronunciation dictionaries to build ASR systems, it still requires a large amount of paired data, i.e., speech utterances and their transcriptions. Cycle-consistency losses have been recently proposed as a way to mitigate the problem of limited paired data. These approaches compose a reverse operation with a given transformation, e.g., text-to-speech (TTS) with ASR, to build a loss that only requires unsupervised data, speech in this example. Applying cycle consistency to ASR models is not trivial since fundamental information, such as speaker traits, are lost in the intermediate text bottleneck. To solve this problem, this work presents a loss that is based on the speech encoder state sequence instead of the raw speech signal. This is achieved by training a Text-To-Encoder model and defining a loss based on the encoder reconstruction error. Experimental results on the LibriSpeech corpus show that the proposed cycle-consistency training reduced the word error rate by 14.7% from an initial model trained with 100-hour paired data, using an additional 360 hours of audio data without transcriptions. We also investigate the use of text-only data mainly for language modeling to further improve the performance in the unpaired data training scenario.Comment: Submitted to ICASSP'1

    Semi-supervised Sequence-to-sequence ASR using Unpaired Speech and Text

    Full text link
    Sequence-to-sequence automatic speech recognition (ASR) models require large quantities of data to attain high performance. For this reason, there has been a recent surge in interest for unsupervised and semi-supervised training in such models. This work builds upon recent results showing notable improvements in semi-supervised training using cycle-consistency and related techniques. Such techniques derive training procedures and losses able to leverage unpaired speech and/or text data by combining ASR with Text-to-Speech (TTS) models. In particular, this work proposes a new semi-supervised loss combining an end-to-end differentiable ASR→\rightarrowTTS loss with TTS→\rightarrowASR loss. The method is able to leverage both unpaired speech and text data to outperform recently proposed related techniques in terms of \%WER. We provide extensive results analyzing the impact of data quantity and speech and text modalities and show consistent gains across WSJ and Librispeech corpora. Our code is provided in ESPnet to reproduce the experiments.Comment: INTERSPEECH 201

    From Semi-supervised to Almost-unsupervised Speech Recognition with Very-low Resource by Jointly Learning Phonetic Structures from Audio and Text Embeddings

    Full text link
    Producing a large amount of annotated speech data for training ASR systems remains difficult for more than 95% of languages all over the world which are low-resourced. However, we note human babies start to learn the language by the sounds (or phonetic structures) of a small number of exemplar words, and "generalize" such knowledge to other words without hearing a large amount of data. We initiate some preliminary work in this direction. Audio Word2Vec is used to learn the phonetic structures from spoken words (signal segments), while another autoencoder is used to learn the phonetic structures from text words. The relationships among the above two can be learned jointly, or separately after the above two are well trained. This relationship can be used in speech recognition with very low resource. In the initial experiments on the TIMIT dataset, only 2.1 hours of speech data (in which 2500 spoken words were annotated and the rest unlabeled) gave a word error rate of 44.6%, and this number can be reduced to 34.2% if 4.1 hr of speech data (in which 20000 spoken words were annotated) were given. These results are not satisfactory, but a good starting point

    Augmented Cyclic Adversarial Learning for Low Resource Domain Adaptation

    Full text link
    Training a model to perform a task typically requires a large amount of data from the domains in which the task will be applied. However, it is often the case that data are abundant in some domains but scarce in others. Domain adaptation deals with the challenge of adapting a model trained from a data-rich source domain to perform well in a data-poor target domain. In general, this requires learning plausible mappings between domains. CycleGAN is a powerful framework that efficiently learns to map inputs from one domain to another using adversarial training and a cycle-consistency constraint. However, the conventional approach of enforcing cycle-consistency via reconstruction may be overly restrictive in cases where one or more domains have limited training data. In this paper, we propose an augmented cyclic adversarial learning model that enforces the cycle-consistency constraint via an external task specific model, which encourages the preservation of task-relevant content as opposed to exact reconstruction. We explore digit classification in a low-resource setting in supervised, semi and unsupervised situation, as well as high resource unsupervised. In low-resource supervised setting, the results show that our approach improves absolute performance by 14% and 4% when adapting SVHN to MNIST and vice versa, respectively, which outperforms unsupervised domain adaptation methods that require high-resource unlabeled target domain. Moreover, using only few unsupervised target data, our approach can still outperforms many high-resource unsupervised models. In speech domains, we similarly adopt a speech recognition model from each domain as the task specific model. Our approach improves absolute performance of speech recognition by 2% for female speakers in the TIMIT dataset, where the majority of training samples are from male voices.Comment: 14 pages, 5 figures, 8 tables; Accepted as a conference paper at ICLR 201

    Unsupervised Feature Learning for Environmental Sound Classification Using Weighted Cycle-Consistent Generative Adversarial Network

    Full text link
    In this paper we propose a novel environmental sound classification approach incorporating unsupervised feature learning from codebook via spherical KK-Means++ algorithm and a new architecture for high-level data augmentation. The audio signal is transformed into a 2D representation using a discrete wavelet transform (DWT). The DWT spectrograms are then augmented by a novel architecture for cycle-consistent generative adversarial network. This high-level augmentation bootstraps generated spectrograms in both intra and inter class manners by translating structural features from sample to sample. A codebook is built by coding the DWT spectrograms with the speeded-up robust feature detector (SURF) and the K-Means++ algorithm. The Random Forest is our final learning algorithm which learns the environmental sound classification task from the clustered codewords in the codebook. Experimental results in four benchmarking environmental sound datasets (ESC-10, ESC-50, UrbanSound8k, and DCASE-2017) have shown that the proposed classification approach outperforms the state-of-the-art classifiers in the scope, including advanced and dense convolutional neural networks such as AlexNet and GoogLeNet, improving the classification rate between 3.51% and 14.34%, depending on the dataset.Comment: Paper Accepted for Publication in Elsevier Applied Soft Computin

    Generative Adversarial Training Data Adaptation for Very Low-resource Automatic Speech Recognition

    Full text link
    It is important to transcribe and archive speech data of endangered languages for preserving heritages of verbal culture and automatic speech recognition (ASR) is a powerful tool to facilitate this process. However, since endangered languages do not generally have large corpora with many speakers, the performance of ASR models trained on them are considerably poor in general. Nevertheless, we are often left with a lot of recordings of spontaneous speech data that have to be transcribed. In this work, for mitigating this speaker sparsity problem, we propose to convert the whole training speech data and make it sound like the test speaker in order to develop a highly accurate ASR system for this speaker. For this purpose, we utilize a CycleGAN-based non-parallel voice conversion technology to forge a labeled training data that is close to the test speaker's speech. We evaluated this speaker adaptation approach on two low-resource corpora, namely, Ainu and Mboshi. We obtained 35-60% relative improvement in phone error rate on the Ainu corpus, and 40% relative improvement was attained on the Mboshi corpus. This approach outperformed two conventional methods namely unsupervised adaptation and multilingual training with these two corpora.Comment: Accepted for Interspeech 202

    WaveCycleGAN: Synthetic-to-natural speech waveform conversion using cycle-consistent adversarial networks

    Full text link
    We propose a learning-based filter that allows us to directly modify a synthetic speech waveform into a natural speech waveform. Speech-processing systems using a vocoder framework such as statistical parametric speech synthesis and voice conversion are convenient especially for a limited number of data because it is possible to represent and process interpretable acoustic features over a compact space, such as the fundamental frequency (F0) and mel-cepstrum. However, a well-known problem that leads to the quality degradation of generated speech is an over-smoothing effect that eliminates some detailed structure of generated/converted acoustic features. To address this issue, we propose a synthetic-to-natural speech waveform conversion technique that uses cycle-consistent adversarial networks and which does not require any explicit assumption about speech waveform in adversarial learning. In contrast to current techniques, since our modification is performed at the waveform level, we expect that the proposed method will also make it possible to generate `vocoder-less' sounding speech even if the input speech is synthesized using a vocoder framework. The experimental results demonstrate that our proposed method can 1) alleviate the over-smoothing effect of the acoustic features despite the direct modification method used for the waveform and 2) greatly improve the naturalness of the generated speech sounds.Comment: SLT201

    Cycle-Consistent Speech Enhancement

    Full text link
    Feature mapping using deep neural networks is an effective approach for single-channel speech enhancement. Noisy features are transformed to the enhanced ones through a mapping network and the mean square errors between the enhanced and clean features are minimized. In this paper, we propose a cycle-consistent speech enhancement (CSE) in which an additional inverse mapping network is introduced to reconstruct the noisy features from the enhanced ones. A cycle-consistent constraint is enforced to minimize the reconstruction loss. Similarly, a backward cycle of mappings is performed in the opposite direction with the same networks and losses. With cycle-consistency, the speech structure is well preserved in the enhanced features while noise is effectively reduced such that the feature-mapping network generalizes better to unseen data. In cases where only unparalleled noisy and clean data is available for training, two discriminator networks are used to distinguish the enhanced and noised features from the clean and noisy ones. The discrimination losses are jointly optimized with reconstruction losses through adversarial multi-task learning. Evaluated on the CHiME-3 dataset, the proposed CSE achieves 19.60% and 6.69% relative word error rate improvements respectively when using or without using parallel clean and noisy speech data.Comment: 5 pages, 2 figures. Interspeech 2018. arXiv admin note: text overlap with arXiv:1809.0225

    A Style Transfer Approach to Source Separation

    Full text link
    Training neural networks for source separation involves presenting a mixture recording at the input of the network and updating network parameters in order to produce an output that resembles the clean source. Consequently, supervised source separation depends on the availability of paired mixture-clean training examples. In this paper, we interpret source separation as a style transfer problem. We present a variational auto-encoder network that exploits the commonality across the domain of mixtures and the domain of clean sounds and learns a shared latent representation across the two domains. Using these cycle-consistent variational auto-encoders, we learn a mapping from the mixture domain to the domain of clean sounds and perform source separation without explicitly supervising with paired training examples

    WaveCycleGAN2: Time-domain Neural Post-filter for Speech Waveform Generation

    Full text link
    WaveCycleGAN has recently been proposed to bridge the gap between natural and synthesized speech waveforms in statistical parametric speech synthesis and provides fast inference with a moving average model rather than an autoregressive model and high-quality speech synthesis with the adversarial training. However, the human ear can still distinguish the processed speech waveforms from natural ones. One possible cause of this distinguishability is the aliasing observed in the processed speech waveform via down/up-sampling modules. To solve the aliasing and provide higher quality speech synthesis, we propose WaveCycleGAN2, which 1) uses generators without down/up-sampling modules and 2) combines discriminators of the waveform domain and acoustic parameter domain. The results show that the proposed method 1) alleviates the aliasing well, 2) is useful for both speech waveforms generated by analysis-and-synthesis and statistical parametric speech synthesis, and 3) achieves a mean opinion score comparable to those of natural speech and speech synthesized by WaveNet (open WaveNet) and WaveGlow while processing speech samples at a rate of more than 150 kHz on an NVIDIA Tesla P100.Comment: Submitted to INTERSPEECH201
    • …
    corecore