4,477 research outputs found

    A novel pseudo-random number generator based on discrete chaotic iterations

    Full text link
    Security of information transmitted through the Internet, against passive or active attacks is an international concern. The use of a chaos-based pseudo-random bit sequence to make it unrecognizable by an intruder, is a field of research in full expansion. This mask of useful information by modulation or encryption is a fundamental part of the TLS Internet exchange protocol. In this paper, a new method using discrete chaotic iterations to generate pseudo-random numbers is presented. This pseudo-random number generator has successfully passed the NIST statistical test suite (NIST SP800-22). Security analysis shows its good characteristics. The application for secure image transmission through the Internet is proposed at the end of the paper.Comment: The First International Conference on Evolving Internet:Internet 2009 pp.71--76 http://dx.doi.org/10.1109/INTERNET.2009.1

    Dynamics of Coupled Maps with a Conservation Law

    Get PDF
    A particularly simple model belonging to a wide class of coupled maps which obey a local conservation law is studied. The phase structure of the system and the types of the phase transitions are determined. It is argued that the structure of the phase diagram is robust with respect to mild violations of the conservation law. Critical exponents possibly determining a new universality class are calculated for a set of independent order parameters. Numerical evidence is produced suggesting that the singularity in the density of Lyapunov exponents at λ=0\lambda=0 is a reflection of the singularity in the density of Fourier modes (a ``Van Hove'' singularity) and disappears if the conservation law is broken. Applicability of the Lyapunov dimension to the description of spatiotemporal chaos in a system with a conservation law is discussed.Comment: To be published in CHAOS #7 (31 page, 16 figures

    Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems

    Full text link
    Traditionally, chaotic systems are built on the domain of infinite precision in mathematics. However, the quantization is inevitable for any digital devices, which causes dynamical degradation. To cope with this problem, many methods were proposed, such as perturbing chaotic states and cascading multiple chaotic systems. This paper aims at developing a novel methodology to design the higher-dimensional digital chaotic systems (HDDCS) in the domain of finite precision. The proposed system is based on the chaos generation strategy controlled by random sequences. It is proven to satisfy the Devaney's definition of chaos. Also, we calculate the Lyapunov exponents for HDDCS. The application of HDDCS in image encryption is demonstrated via FPGA platform. As each operation of HDDCS is executed in the same fixed precision, no quantization loss occurs. Therefore, it provides a perfect solution to the dynamical degradation of digital chaos.Comment: 12 page

    Time Quasilattices in Dissipative Dynamical Systems

    Full text link
    We establish the existence of `time quasilattices' as stable trajectories in dissipative dynamical systems. These tilings of the time axis, with two unit cells of different durations, can be generated as cuts through a periodic lattice spanned by two orthogonal directions of time. We show that there are precisely two admissible time quasilattices, which we term the infinite Pell and Clapeyron words, reached by a generalization of the period-doubling cascade. Finite Pell and Clapeyron words of increasing length provide systematic periodic approximations to time quasilattices which can be verified experimentally. The results apply to all systems featuring the universal sequence of periodic windows. We provide examples of discrete-time maps, and periodically-driven continuous-time dynamical systems. We identify quantum many-body systems in which time quasilattices develop rigidity via the interaction of many degrees of freedom, thus constituting dissipative discrete `time quasicrystals'.Comment: 38 pages, 14 figures. This version incorporates "Pell and Clapeyron Words as Stable Trajectories in Dynamical Systems", arXiv:1707.09333. Submission to SciPos

    Resonances of the Frobenius-Perron Operator for a Hamiltonian Map with a Mixed Phase Space

    Full text link
    Resonances of the (Frobenius-Perron) evolution operator P for phase-space densities have recently attracted considerable attention, in the context of interrelations between classical and quantum dynamics. We determine these resonances as well as eigenvalues of P for Hamiltonian systems with a mixed phase space, by truncating P to finite size in a Hilbert space of phase-space functions and then diagonalizing. The corresponding eigenfunctions are localized on unstable manifolds of hyperbolic periodic orbits for resonances and on islands of regular motion for eigenvalues. Using information drawn from the eigenfunctions we reproduce the resonances found by diagonalization through a variant of the cycle expansion of periodic-orbit theory and as rates of correlation decay.Comment: 18 pages, 7 figure

    Open circle maps: Small hole asymptotics

    Full text link
    We consider escape from chaotic maps through a subset of phase space, the hole. Escape rates are known to be locally constant functions of the hole position and size. In spite of this, for the doubling map we can extend the current best result for small holes, a linear dependence on hole size h, to include a smooth h^2 ln h term and explicit fractal terms to h^2 and higher orders, confirmed by numerical simulations. For more general hole locations the asymptotic form depends on a dynamical Diophantine condition using periodic orbits ordered by stability.Comment: This version has a new section investigating different hole locations. Now 9 pages, 3 figure

    Predictability: a way to characterize Complexity

    Full text link
    Different aspects of the predictability problem in dynamical systems are reviewed. The deep relation among Lyapunov exponents, Kolmogorov-Sinai entropy, Shannon entropy and algorithmic complexity is discussed. In particular, we emphasize how a characterization of the unpredictability of a system gives a measure of its complexity. Adopting this point of view, we review some developments in the characterization of the predictability of systems showing different kind of complexity: from low-dimensional systems to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence. A special attention is devoted to finite-time and finite-resolution effects on predictability, which can be accounted with suitable generalization of the standard indicators. The problems involved in systems with intrinsic randomness is discussed, with emphasis on the important problems of distinguishing chaos from noise and of modeling the system. The characterization of irregular behavior in systems with discrete phase space is also considered.Comment: 142 Latex pgs. 41 included eps figures, submitted to Physics Reports. Related information at this http://axtnt2.phys.uniroma1.i
    • 

    corecore