134 research outputs found

    Recursive circulants and their embeddings among hypercubes

    Get PDF
    AbstractWe propose an interconnection structure for multicomputer networks, called recursive circulant. Recursive circulant G(N,d) is defined to be a circulant graph with N nodes and jumps of powers of d. G(N,d) is node symmetric, and has some strong hamiltonian properties. G(N,d) has a recursive structure when N=cdm, 1â©œc<d. We develop a shortest-path routing algorithm in G(cdm,d), and analyze various network metrics of G(cdm,d) such as connectivity, diameter, mean internode distance, and visit ratio. G(2m,4), whose degree is m, compares favorably to the hypercube Qm. G(2m,4) has the maximum possible connectivity, and its diameter is ⌈(3m−1)/4⌉. Recursive circulants have interesting relationship with hypercubes in terms of embedding. We present expansion one embeddings among recursive circulants and hypercubes, and analyze the costs associated with each embedding. The earlier version of this paper appeared in Park and Chwa (Proc. Internat. Symp. Parallel Architectures, Algorithms and Networks ISPAN’94, Kanazawa, Japan, December 1994, pp. 73–80)

    Index

    Get PDF

    Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning

    Full text link
    The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.Comment: 71 pages, 42 Figures, 1 Table, 1 Appendix. arXiv admin note: text overlap with arXiv:2109.08184 by other author

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Master index of volumes 161–170

    Get PDF
    • 

    corecore