9,028 research outputs found

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem

    Full text link
    As a consequence of the growing popularity of smart mobile devices, mobile malware is clearly on the rise, with attackers targeting valuable user information and exploiting vulnerabilities of the mobile ecosystems. With the emergence of large-scale mobile botnets, smartphones can also be used to launch attacks on mobile networks. The NEMESYS project will develop novel security technologies for seamless service provisioning in the smart mobile ecosystem, and improve mobile network security through better understanding of the threat landscape. NEMESYS will gather and analyze information about the nature of cyber-attacks targeting mobile users and the mobile network so that appropriate counter-measures can be taken. We will develop a data collection infrastructure that incorporates virtualized mobile honeypots and a honeyclient, to gather, detect and provide early warning of mobile attacks and better understand the modus operandi of cyber-criminals that target mobile devices. By correlating the extracted information with the known patterns of attacks from wireline networks, we will reveal and identify trends in the way that cyber-criminals launch attacks against mobile devices.Comment: Accepted for publication in Proceedings of the 28th International Symposium on Computer and Information Sciences (ISCIS'13); 9 pages; 1 figur

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Cyber-Archaeology: Notes on the simulation of the past

    Full text link
    [EN] Thirteen years after the book “Virtual Archaeology” (Forte, 1996, 97) it is time to re-discuss the definition, the key concepts and some new trends and applications. The paper discusses the introduction of the term “cyber-archaeology” in relation with the simulation process deriving from the inter-connected and multivocal feedback between users/actors and virtual ecosystems. In this new context of cyber worlds, it is more appropriate to talk about simulation of the past rather than reconstruction of the past. The multivocality of the simulation opens new perspectives in the interpretation process, not imposing the final reconstruction, but suggesting, evocating, simulating multiple output, not “the past” but a potential past. New epistemological models of cyber archaeology have to be investigated: what happens in a immersive environment of virtual archaeology where every user is “embodied” in the cyber space? The ontology of archaeological information, or the cybernetics of archaeology, refers to all the interconnective relationships which the datum produces, the code of transmission, and its transmittability. Because it depends on interrelationships, by its very nature information cannot be neutral with respect to how it is processed and perceived. It follows that the process of knowledge and communication have to be unified and represented by a single vector. 3D information is regarded as the core of the knowledge process, because it creates feedback, then cybernetic difference, among the interactor, the scientist and the ecosystem. It is argued that Virtual Reality (both offline and online) represents a possible ecosystem, which is able to host top-down and bottom-up processes of knowledge and communication. In these terms, the past is generated and coded by “a simulation process”. Thus, from the first phases of data acquisition in the field, the technical methodologies and technologies that we use, influence in a decisive way all the subsequent phases of interpretation and communication. In the light of these considerations, what is the relationship between information and representation? How much information does a digital model contain? What sorts of and how many ontologies ought to be chosen to permit an acceptable transmittability? Indeed, our Archaeological communication ought to be understood as a process of validation of the entire cognitive process of understanding and not as a simple addendum to research, or as a dispensable compendium of data.[ES] Trece años después de la publicación del libro "Arqueología virtual" (Forte, 1996, 97) es el momento de volver a discutir sobre la definición, los conceptos clave y algunas nuevas tendencias y aplicaciones de la arqueología virtual. El presente documento analiza la introducción del término "cyber-arqueología" en relación con el proceso de simulación derivado de la interconexión y la retroalimentación multivocal y entre los usuarios / actores y ecosistemas virtuales. En este nuevo contexto de mundos cibernéticos, es más adecuado hablar de simulación del pasado que de reconstrucción del pasado. La multivocalidad de la simulación abre nuevas perspectivas en el proceso de interpretación, no imponiendo la última reconstrucción, sino sugiriendo, evocando, simulando múltiples resultados, y no "el pasado", sino un potencial pasado. Nuevos modelos epistemológicos de la arqueología cibernética deben ser investigados: Que ocurre en un entorno inmersivo de arqueología virtual cuando cada usuario es "materializado" en el espacio cibernético? La ontología de la información arqueológica, o la cibernética de la arqueología, se refiere a la interconectividad de todas las relaciones que produce el dato, el código de envío, y su transmisibilidad. Porque depende de las interrelaciones, por su propia naturaleza, la información no puede ser neutral con respecto a la forma en que se procesa y percibe. De ello se deduce que el proceso de conocimiento y la comunicación han de ser unificadas y representadas por un único vector. La información 3D se considera como el núcleo del proceso de conocimiento, porque propicia la retroalimentación, entre el usuario, el científico y el ecosistema. Se argumenta que la Realidad Virtual (tanto fuera de línea como en línea) representa un posible ecosistema, que es capaz de ser anfitrión de los procesos de conocimiento y comunicación tanto de arriba a abajo como de abajo a arriba. En estos términos, el pasado se genera y codifica por "un proceso de simulación". Así, desde las primeras fases de adquisición de datos sobre el terreno, las metodologías técnicas así como las tecnologías que usamos, influyen de manera decisiva en todas las fases de interpretación y comunicación. A la luz de estas consideraciones, ¿cuál es la relación entre la información y la representación? ¿Cuánta información quedará incluida en el modelo digital? ¿Qué clase y cuántas ontologías deberían ser elegidas para permitir una transmisibilidad aceptable? De hecho, la comunicación arqueológica debe ser entendida como una fase de validación de todo el proceso cognitivo de comprensión del conocimiento, y no como una simple adición a la investigación, o como un compendio de los datos prescindible.The Virtual Museum of the Ancient Via Flaminia was supported by Arcus spa and managed by CNR-ITABC (scientific direction) and National Roman Museum in RomeForte, M. (2011). Cyber-Archaeology: Notes on the simulation of the past. Virtual Archaeology Review. 2(4):7-18. https://doi.org/10.4995/var.2011.4543OJS71824ANTINUCCI, A., 2004, Comunicare il museo, Laterza, Roma, 2004.BAUDRILLARD J.. 1994, Simulacra and Simulation, Ann Arbor: University of Michigan Press, 1994.BATESON, 1967, "Cybernetic explanation", in SEM, 410.BATESON, 1972, Steps to an Ecology of Mind , San Francisco, Chandler Press.BATESON G., 1979, Mind and Nature. A Necessary Unit, Dutton, New York.BIOCCA F. 1997, The cyborg's dilemma: Progressive embodiment in virtual environments, Journal of Computer-Mediated Communication, vol. 3, n. 2, 1997. http://dx.doi.org/10.1111/j.1083-6101.1997.tb00070.x http://dx.doi.org/10.1109/ct.1997.617676DELEUZE G., GUATTARI, F., 1987, A Thousand Plateaus: Capitalism and Schizophrenia, University of Minnesota Press, 1987FORTE, M. 1997, (ed. by) Virtual Archaeology, (forward by Colin Renfrew) Thames & Hudson Ltd, 1997 (1st edition 1996, Milan).FORTE, M., 2000, About virtual archaeology: disorders, cognitive interactions and virtuality, in Barcelo J., Forte M., Sanders D., 2000 (eds.), Virtual reality in archaeology, Oxford, ArcheoPress (BAR International Series S 843), 247-263.FORTE M., 2003, Mindscape: ecological thinking, cyber-anthropology, and virtual archaeological landscapes, in "The reconstruction of Archaeological Landscapes through Digital Technologies" (eds. M.Forte, P.R.Williams), Proceedings of the 1st Italy-United States Workshop, Boston, Massachussets, USA, November 1-3, 2001, BAR International Series 1151, Oxford, 2002, 95-108.FORTE M., 2005, A Digital "Cyber" Protocol for the Reconstruction of the Archaeological Landscape: Virtual Reality and Mindscapes in Recording, Modeling and Visualization of Cultural Heritage (eds: E.Baltsavias, A.Gruen, L.Van Gool, M.Pateraki) Published by Taylor & Francis / Balkema ISBN 0 415 39208 X, 339-351, 2005.FORTE et alii, 2006; M.Forte, S.Pescarin, E.Pietroni, C.Rufa, 2006, Multiuser interaction in an archaeological landscape: the Flaminia Project, in (M.Forte, S.Campana, eds.by) From Space to Place, Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome, December 4-7, 2006, BAR International Series 1568, Archaeopress, Oxford, 2006, 189-196.FORTE, M, Pescarin, S. Pietroni, E., 2006, Transparency, interaction, communication and open source in Virtual Archaeology, in (M.Forte, S.Campana, eds.by) From Space to Place, Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, Rome, December 4-7, 2006, BAR International Series 1568, Archaeopress, Oxford, 2006 535-540.FORTE, M., 2007, Ecological Cybernetics, Virtual Reality and Virtual Heritage, in "Theorizing Digital Cultural Heritage. A Critical Discourse" (Edited by Fiona Cameron and Sarah Kenderdine), MIT Press, Cambridge, MA, 389-407. http://dx.doi.org/10.7551/mitpress/9780262033534.003.0020FORTE M., 2008 (ed.), La Villa di Livia. Un percorso di ricerca di archeologia virtuale, L'Herma, Rome, 2008.GALLESE, V. 2005, Embodied simulation: From Neurons to Phenomenal Experience, "Phenomenology and the cognitive sciences", 4, 23-48. http://dx.doi.org/10.1007/s11097-005-4737-zGIBSON, J. J., 1999. Un approccio ecologico alla percezione visiva (Il Mulino: Bologna).INGOLD, T., 2000, The perception of the Enviroment. Essays in livelihood, dwelling and skill, London and New York, Routledge. http://dx.doi.org/10.4324/9780203466025KORZYBSKI A., 1941, Science and Sanity, Science Press, New York, 1941.MATURANA, H, Varela, F., 1980, Autopoiesis and Cognition: the Realization of the Living, Boston Studies in the philosophy of science, Cohen, Robert S., And Marx W. Wartofsky (eds.), vol. 42, Dordecht (Holland): D. Reidel Publishing Co., 1980. http://dx.doi.org/10.1007/978-94-009-8947-4MATURANA, H, Varela, F., 1992, The Tree of Knowledge: the Biological Roots of Human Understanding, Boston: Shambhala, 1987, (Revised Edition: same publisher, 1992).MELLET-D'HUART D., 2006, A Model of (En)Action to approach Embodiment: A Cornerstone for the Design of Virtual Environments for Learning, in Win W. & Hedley N., Eds. Journal of Virtual reality, special issue on education. Springer London. Volume 10, Numbers 3-4 / December, 2006. Pp. 253-269. 2006.Morganti, F. Riva, G. 2006, Conoscenza, comunicazione e tecnologia: Aspetti Cognitivi della RV, Milano: LEDPiaget, J. (1980). Adaptation and Intelligence. London: University of Chicago Press.RICHARDSON, A. E., MONTELLO, D. & HEGARTY, M. 1999, Spatial knowledge acquisition from maps, and from navigation in real and virtual environments, in Memory & Cognition, 27, 741-750.SCHROEDER, R., 1997, Networked Worlds: Social Aspects of Multi-User Virtual Reality Technology, Sociological Research Online, vol. 2, no. 4. http://dx.doi.org/10.5153/sro.291TAYLOR, M.C. 2005, Il momento della complessità. L'emergere di una cultura in rete. Codice edizioni: Torino.VARELA et al., 1991, VARELA, F., THOMPSON, E. - ROSCH, E. The Embodied Mind. Cognitive Science and Human Experience, MIT Press, Cambridge, 1991.VARELA F.J., 1999, "Quattro linee guida per il futuro della conoscenza", in Argonauti nella Noosfera. Mente e cuore verso nuovi spazi di comunicazione, Vol. 2, strutture ambientali n.118/dicembre 1999, Atti della XXV ed. delle Giornate internazionali di studio promosse dal Centro Ricerche Pio Manzù.WATZLAWICK, P. (ed.) (1985) The invented reality. New York, Norton.WIENER, N., 1948, Cybernetics, or control and communication in the animal and the machine. Cambridge, Massachusetts: The Technology Press; New York: John Wiley & Sons, Inc., 1948

    Engineering methods and tools for cyber–physical automation systems

    Get PDF
    Much has been published about potential benefits of the adoption of cyber–physical systems (CPSs) in manufacturing industry. However, less has been said about how such automation systems might be effectively configured and supported through their lifecycles and how application modeling, visualization, and reuse of such systems might be best achieved. It is vitally important to be able to incorporate support for engineering best practice while at the same time exploiting the potential that CPS has to offer in an automation systems setting. This paper considers the industrial context for the engineering of CPS. It reviews engineering approaches that have been proposed or adopted to date including Industry 4.0 and provides examples of engineering methods and tools that are currently available. The paper then focuses on the CPS engineering toolset being developed by the Automation Systems Group (ASG) in the Warwick Manufacturing Group (WMG), University of Warwick, Coventry, U.K. and explains via an industrial case study how such a component-based engineering toolset can support an integrated approach to the virtual and physical engineering of automation systems through their lifecycle via a method that enables multiple vendors' equipment to be effectively integrated and provides support for the specification, validation, and use of such systems across the supply chain, e.g., between end users and system integrators
    corecore