20,969 research outputs found

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications

    Models of leader elections and their applications

    Get PDF
    New research about cyber-physical systems is rapidly changing the way we think about critical infrastructures such as the power grid. Changing requirements for the generation, storage, and availability of power are all driving the development of the smart-grid. Many smart-grid projects disperse power generation across a wide area and control devices with a distributed system. However, in a distributed system, the state of processes is hard to determine due to isolation of memory. By using information flow security models, we reason about a process\u27s beliefs of the system state in a distributed system. Information flow analysis aided in the creation of Markov models for the expected behavior of a cyber controller in a smart-grid system using a communication network with omission faults. The models were used as part of an analysis of the distributed system behavior when there are communication faults. With insight gained from these models, existing congestion management techniques were extended to create a feedback mechanism, allowing the cyber-physical system to better react to issues in the communication network --Abstract, page iii

    A Survey on Cryptography Key Management Schemes for Smart Grid

    Get PDF
    A Smart grid is a modern electricity delivery system. It is an integration of energy systems and other necessary elements including traditional upgrades and new grid technologies with renewable generation and increased consumer storage. It uses information and communication technology (ICT) to operate, monitor and control data between the generation source and the end user. Smart grids have duplex power flow and communication to achieve high efficiency, reliability, environmental, economics, security and safety standards. However, along with unique facilities, smart grids face security challenges such as access control, connectivity, fault tolerance, privacy, and other security issues. Cyber-attacks, in the recent past, on critical infrastructure including smart grids have highlighted security as a major requirement for smart grids. Therefore, cryptography and key management are necessary for smart grids to become secure and realizable. Key management schemes are processes of key organizational frameworks, distribution, generation, refresh and key storage policies. Currently, several secure schemes, related to key management for smart grid have been proposed to achieve end-to-end secure communication. This paper presents a comprehensive survey and discussion on the current state of the key management of smart grids

    CPSA: A Cyber-Physical Security Assessment Tool for Situational Awareness in Smart Grid

    Get PDF
    It has now become critical and important to understanding the nature of cyber-attacks and their impact on the physical operation of emerging smart electricity grids. Modeling and simulation provide a cost-effective means to develop frameworks and algorithms that address cyber-physical security challenges facing the smart grid. Existing simulation tools support either the communication network or the power system, but not both together. Thus, it is difficult to explore the effects of cyber-physical attacks on power system dynamics and operations. In order to bridge this gap, a cyber-physical co-simulator is required. In this paper, we present a novel integrated cyber-physical security co-simulator tool capable of cyber-physical security assessment (CPSA), which simulates the communication network and the power system together. The tool identifies future vulnerable states and bad measurements and guides the operator at the control center on taking appropriate action to minimize disruption of the physical power system operation due to cyber-attack. The developed tool can be used in understanding of power system monitoring, analyzing the nature of cyber-attacks, detecting bad measurement data, bad command, disabled devices and understand their impact on the operation of the power system

    Secure Control and Operation of Energy Cyber-Physical Systems Through Intelligent Agents

    Get PDF
    The operation of the smart grid is expected to be heavily reliant on microprocessor-based control. Thus, there is a strong need for interoperability standards to address the heterogeneous nature of the data in the smart grid. In this research, we analyzed in detail the security threats of the Generic Object Oriented Substation Events (GOOSE) and Sampled Measured Values (SMV) protocol mappings of the IEC 61850 data modeling standard, which is the most widely industry-accepted standard for power system automation and control. We found that there is a strong need for security solutions that are capable of defending the grid against cyber-attacks, minimizing the damage in case a cyber-incident occurs, and restoring services within minimal time. To address these risks, we focused on correlating cyber security algorithms with physical characteristics of the power system by developing intelligent agents that use this knowledge as an important second line of defense in detecting malicious activity. This will complement the cyber security methods, including encryption and authentication. Firstly, we developed a physical-model-checking algorithm, which uses artificial neural networks to identify switching-related attacks on power systems based on load flow characteristics. Secondly, the feasibility of using neural network forecasters to detect spoofed sampled values was investigated. We showed that although such forecasters have high spoofed-data-detection accuracy, they are prone to the accumulation of forecasting error. In this research, we proposed an algorithm to detect the accumulation of the forecasting error based on lightweight statistical indicators. The effectiveness of the proposed algorithms was experimentally verified on the Smart Grid testbed at FIU. The test results showed that the proposed techniques have a minimal detection latency, in the range of microseconds. Also, in this research we developed a network-in-the-loop co-simulation platform that seamlessly integrates the components of the smart grid together, especially since they are governed by different regulations and owned by different entities. Power system simulation software, microcontrollers, and a real communication infrastructure were combined together to provide a cohesive smart grid platform. A data-centric communication scheme was selected to provide an interoperability layer between multi-vendor devices, software packages, and to bridge different protocols together

    The Impact of Stealthy Attacks on Smart Grid Performance: Tradeoffs and Implications

    Full text link
    The smart grid is envisioned to significantly enhance the efficiency of energy consumption, by utilizing two-way communication channels between consumers and operators. For example, operators can opportunistically leverage the delay tolerance of energy demands in order to balance the energy load over time, and hence, reduce the total operational cost. This opportunity, however, comes with security threats, as the grid becomes more vulnerable to cyber-attacks. In this paper, we study the impact of such malicious cyber-attacks on the energy efficiency of the grid in a simplified setup. More precisely, we consider a simple model where the energy demands of the smart grid consumers are intercepted and altered by an active attacker before they arrive at the operator, who is equipped with limited intrusion detection capabilities. We formulate the resulting optimization problems faced by the operator and the attacker and propose several scheduling and attack strategies for both parties. Interestingly, our results show that, as opposed to facilitating cost reduction in the smart grid, increasing the delay tolerance of the energy demands potentially allows the attacker to force increased costs on the system. This highlights the need for carefully constructed and robust intrusion detection mechanisms at the operator.Comment: Technical report - this work was accepted to IEEE Transactions on Control of Network Systems, 2016. arXiv admin note: substantial text overlap with arXiv:1209.176

    Self-organising smart grid architectures for cyber-security

    Get PDF
    PhD ThesisCurrent conventional power systems consist of large-scale centralised generation and unidirectional power flow from generation to demand. This vision for power system design is being challenged by the need to satisfy the energy trilemma, as the system is required to be sustainable, available and secure. Emerging technologies are restructuring the power system; the addition of distributed generation, energy storage and active participation of customers are changing the roles and requirements of the distribution network. Increased controllability and monitoring requirements combined with an increase in controllable technologies has played a pivotal role in the transition towards smart grids. The smart grid concept features a large amount of sensing and monitoring equipment sharing large volumes of information. This increased reliance on the ICT infrastructure, raises the importance of cyber-security due to the number of vulnerabilities which can be exploited by an adversary. The aim of this research was to address the issue of cyber-security within a smart grid context through the application of self-organising communication architectures. The work examined the relevance and potential for self-organisation when performing voltage control in the presence of a denial of service attack event. The devised self-organising architecture used techniques adapted from a range of research domains including underwater sensor networks, wireless communications and smart-vehicle tracking applications. These components were redesigned for a smart grid application and supported by the development of a fuzzy based decision making engine. A multi-agent system was selected as the source platform for delivering the self-organising architecture The application of self-organisation for cyber-security within a smart grid context is a novel research area and one which presents a wide range of potential benefits for a future power system. The results indicated that the developed self-organising architecture was able to avoid control deterioration during an attack event involving up to 24% of the customer population. Furthermore, the system also reduces the communication load on the agents involved in the architecture and demonstrated wider reaching benefits beyond performing voltage control
    corecore