55,269 research outputs found

    Increase the adoption of Agent-based Cyber-Physical Production Systems through the Design of Minimally Invasive Solutions

    Get PDF
    During the last few years, many approaches were proposed to offer companies the ability to have dynamic and flexible production systems. One of the conventional ap-proaches to solving this problem is the implementation of cyber-physical production sys-tems using multi-agent distributed systems. Although these systems can deal with several challenges faced by companies in this area, they have not been accepted and used in real cases. In this way, the primary objective of the proposed work is to understand the chal-lenges usually found in the adoption of these solutions and to develop a strategy to in-crease their acceptance and implementation. Thus, the document focuses on the design and development of cyber-physical produc-tion systems based on agent approaches, requiring minimal changes in the existing pro-duction systems. This approach aims of reducing the impact and the alterations needed to adopt those new cyber-physical production systems. Clarifying the subject, the author presents a definition of a minimal invasive agent-based cyber-physical production system and, the functional requirements that the designers and developers must respect to imple-ment the new software. From these functional requirements derived a list of design princi-ples that must be fulfilled to design and develop a system with these characteristics. Subsequently, to evaluate solutions that aim to be minimally invasive, an evaluation model based on a fuzzy inference system is proposed, which rank the approaches accord-ing to each of the design principles and globally. In this way, the proposed work presents the functional requirements, design principles and evaluation model of minimally invasive cyber-physical production systems, to increase the adoption of such systems

    Control of Cyber-Physical Production Systems: A Concept to Increase the Trustworthiness within Multi-Agent Systems with Distributed Ledger Technology

    Get PDF
    In the course of increasing the flexibility in the area of production, industrial enterprises have been presented with cyber-physical production systems (CPPS). Through the use of autonomously acting CPPS and CPPS components – which often receive multi-agent systems as their corresponding cyber parts – new challenges arise from the need for flexibility and interoperability on the one hand and consistency, trustworthiness as well as reliability of the systems and their components on the other. In order to meet these challenges, this research paper is dedicated to the creation of a technical concept for implementing distributed ledger technology production systems. The paper follows a design-science approach, which consist of analysis, design, and evaluation. The technical concept is based on the GAIA method, which aims to design multi-agent systems and specifically addresses the security and trustworthiness of CPPS-environments. The subsequent evaluation of the concept based on discussions with experts documents its relevance and potential

    An agent-based industrial cyber-physical system deployed in an automobile multi-stage production system

    Get PDF
    Industrial Cyber-Physical Systems (CPS) are promoting the development of smart machines and products, leading to the next generation of intelligent production systems. In this context, Artificial Intelligence (AI) is posed as a key enabler for the realization of CPS requirements, supporting the data analysis and the system dynamic adaptation. However, the centralized Cloud-based AI approaches are not suitable to handle many industrial scenarios, constrained by responsiveness and data sensitivity. Edge Computing can address the new challenges, enabling the decentralization of data analysis along the cyber-physical components. In this context, distributed AI approaches such as those based on Multi-agent Systems (MAS) are essential to handle the distribution and interaction of the components. Based on that, this work uses a MAS approach to design cyber-physical agents that can embed different data analysis capabilities, supporting the decentralization of intelligence. These concepts were applied to an industrial automobile multi-stage production system, where different kinds of data analysis were performed in autonomous and cooperative agents disposed along Edge, Fog and Cloud computing layers. © 2020, Springer Nature Switzerland AG.info:eu-repo/semantics/publishedVersio

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Petri nets approach for designing the migration process towards industrial cyber-physical production systems

    Get PDF
    Presently, many industries are facing strong challenges related to the demand of customized and high-quality products. These pressures lead to internal company's conflicts where current production systems have a rigid structure, forcing the company into a organization stall when a fast product change is required. Therefore, the need to smoothly migrate traditional systems into more feature-rich and cost-effective systems, namely Cyber-Physical Production Systems (CPPS), became a highly discussed topic. PERFoRM project focuses the conceptual transformation of existing production systems towards plug\&produce ones to achieve flexible and reconfigurable manufacturing environments. In particular, the smooth migration process is considered crucial to effectively transpose existing production systems into truly CPPS. This paper describes the use of Petri nets to design the migration process under the PERFoRM perspective, taking advantage of its inherent capabilities to design, analyze, simulate and validate such complex processes.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 680435.info:eu-repo/semantics/publishedVersio

    Scrum for cyber-physical systems: a process proposal

    Get PDF
    Agile development processes and especially Scrum are chang- ing the state of the practice in software development. Many companies in the classical IT sector have adopted them to successfully tackle various challenges from the rapidly changing environments and increasingly complex software systems. Companies developing software for embedded or cyber-physical systems, however, are still hesitant to adopt such processes. Despite successful applications of Scrum and other agile methods for cyber-physical systems, there is still no complete process that maps their specific challenges to practices in Scrum. We propose to fill this gap by treating all design artefacts in such a development in the same way: In software development, the final design is already the product, in hardware and mechanics it is the starting point of production. We sketch the Scrum extension Scrum CPS by showing how Scrum could be used to develop all design artefacts for a cyber physical system. Hardware and mechanical parts that might not be available yet are simulated. With this approach, we can directly and iteratively build the final software and produce detailed models for the hardware and mechanics production in parallel. We plan to further detail Scrum CPS and apply it first in a series of student projects to gather more experience before testing it in an industrial case study

    Vertical Integration in factories using OPC-UA and IEC-61499

    Get PDF
    Nowadays, factory automation systems need to cope with very different challenges, such as big data, IIoT, etc. These challenges lead to a new generation of automation systems based on the so-called Cyber-Physical Production Systems (CPPS) globally connected to form a flexible System of Cyber-Physical Production Systems (SoCPPS). CPPSs require acquisition of production system data and smart data processing to extract information to improve the overall system performance. To achieve that it is needed to bridge the gap between the control systems and higher layers. This paper discusses an approach to use the IEC 61499 function block concept to exchange data between plant floor and higher layers using an industrial standard like OPC UA. The OPC UA server offers subscription mechanisms, making possible the integration of several resources residing at plant floor. As it runs on embedded devices, the proposal makes possible to acquire plant information at low cost, enabling at the same time, a component-based design for enterprise plant floor control with independence of the hardware platform use

    Industry 4.0 and New Paradigms in the Field of Metal Forming

    Get PDF
    Over the last few year, the metalworking sector has been undergoing rapid and radical transformations driven by global competition and the revision of the production focus that is being moved from mass customization to mass individualization. A results of this is introduction of new manufacturing strategies such as Industry 4.0, a concept that combines cyber-physical systems and promote communication and connectivity. Therefore, this concept changes not only the face of the manufacturing systems but also causes transformation of existing business models and the society as a whole. This paper deals with the recent trends and paradigms in the field of metal forming, resulting from the concept of Industry 4.0 and the modern market challenges. The maim attention is paid on the flexibility of manufacturing systems and recent developments in design of smart forming tools

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    • …
    corecore