261 research outputs found

    Cyber-Physical Codesign of Distributed Structural Health Monitoring with Wireless Sensor Networks

    Get PDF
    Our Deteriorating Civil Infrastructure Faces the Critical Challenge of Long-Term Structural Health Monitoring for Damage Detection and Localization. in Contrast to Existing Research that Often Separates the Designs of Wireless Sensor Networks and Structural Engineering Algorithms, This Paper Proposes a Cyber-Physical Codesign Approach to Structural Health Monitoring based on Wireless Sensor Networks. Our Approach Closely Integrates 1) Flexibility-Based Damage Localization Methods that Allow a Tradeoff between the Number of Sensors and the Resolution of Damage Localization, and 2) an Energy-Efficient, Multilevel Computing Architecture Specifically Designed to Leverage the Multiresolution Feature of the Flexibility-Based Approach. the Proposed Approach Has Been Implemented on the Intel Imote2 Platform. Experiments on a Simulated Truss Structure and a Real Full-Scale Truss Structure Demonstrate the System\u27s Efficacy in Damage Localization and Energy Efficiency

    Cyber-Physical Codesign of Distributed Structural Health Monitoring with Wireless Sensor Networks

    Get PDF
    Our Deteriorating Civil Infrastructure Faces the Critical Challenge of Long-Term Structural Health Monitoring for Damage Detection and Localization. in Contrast to Existing Research that Often Separates the Designs of Wireless Sensor Networks and Structural Engineering Algorithms, This Paper Proposes a Cyber-Physical Co-Design Approach to Structural Health Monitoring based on Wireless Sensor Networks. Our Approach Closely Integrates (1) Flexibility-Based Damage Localization Methods that Allow a Tradeoff between the Number of Sensors and the Resolution of Damage Localization, and (2) an Energy-Efficient, Multi-Level Computing Architecture Specifically Designed to Leverage the Multi-Resolution Feature of the Flexibility-Based Approach. the Proposed Approach Has Been Implemented on the Intel Imote2 Platform. Experiments on a Physical Beam and Simulations of a Truss Structure Demonstrate the System\u27s Efficacy in Damage Localization and Energy Efficiency. © 2010 ACM

    Cyber-Physical Codesign of Wireless Structural Control System

    Get PDF
    Structural control systems play a critical role in protecting civil infrastructure from natural hazards such as earthquakes and extreme winds. Utilizing wireless sensors for sensing, communication and control, wireless structural control systems provide an attractive alternative for structural vibration mitigation. Although wireless control systems have advantages of flexible installation, rapid deployment and low maintenance cost, there are unique challenges associated with them, such as wireless network induced time delay and potential data loss. These challenges need to be considered jointly from both the network (cyber) and control (physical) perspectives. This research aims to develop a framework facilitating cyber-physical codesign of wireless control system. The challenges of wireless structural control are addressed through: (1) a numerical simulation tool to realistically model the complexities of wireless structural control systems, (2) a codesign approach for designing wireless control system, (3) a sensor platform to experimentally evaluate wireless control performance, (4) an estimation method to compensate for the data loss and sensor failure, and (5) a framework for fault tolerance study of wireless control system withreal-time hybrid simulation. The results of this work not only provide codesign tools to evaluate and validate wireless control design, but also the codesign strategies to implement on real-world structures for wireless structural control

    Wireless Cyber-Physical Simulator and Case Studies on Structural Control

    Get PDF
    Abstract: Wireless Structural Control (WSC) systems can play a crucial role in protecting civil infrastructure in the event of earthquakes and other natural disasters. Such systems represent an exemplary class of cyber-physical systems that perform close-loop control using wireless sensor networks. Existing WSC research usually employs wireless sensors installed on small lab structures, which cannot capture realistic delays and data loss in wireless sensor networks deployed on large civil structures. The lack of realistic tools that capture both the cyber (wireless) and physical (structural) aspects of WSC systems has been a hurdle for cyber-physical systems research for civil infrastructure. This advances the state of the art through the following contributions. First, we developed the Wireless Cyber-Physical Simulator (WCPS), an integrated environment that combines realistic simulations of both wireless sensor networks and structures. WCPS integrates Simulink and TOSSIM, a state-of-the-art sensor network simulator featuring a realistic wireless model seeded by signal traces. Second, we performed two realistic case studies each combining a structural model with wireless traces collected from real-world environments. The building study combines a benchmark building model and wireless traces collected from a multi-story building. The bridge study combines the structural model of the Cape Girardea

    Practical and Robust Power Management for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks: WSNs) consist of tens or hundreds of small, inexpensive computers equipped with sensors and wireless communication capabilities. Because WSNs can be deployed without fixed infrastructure, they promise to enable sensing applications in environments where installing such infrastructure is not feasible. However, the lack of fixed infrastructure also presents a key challenge for application developers: sensor nodes must often operate for months or years at a time from fixed or limited energy sources. The focus of this dissertation is on reusable power management techniques designed to facilitate sensor network developers in achieving their systems\u27 required lifetimes. Broadly speaking, power management techniques fall into two categories. Many power management protocols developed within the WSN community target specific hardware subsystems in isolation, such as sensor or radio hardware. The first part of this dissertation describes the Adaptive and Robust Topology control protocol: ART), a representative hardware-specific technique for conserving energy used by packet transmissions. In addition to these single-subsystem approaches, many applications can benefit greatly from holistic power management techniques that jointly consider the sensing, computation, and communication costs of potential application configurations. The second part of this dissertation extends this holistic power management approach to two families of structural health monitoring applications. By applying a partially-decentralized architecture, the cost of collecting vibration data for analysis at a centralized base station is greatly reduced. Finally, the last part of this dissertation discusses work toward a system for clinical early warning and intervention. The feasibility of this approach is demonstrated through preliminary study of an early warning component based on historical clinical data. An ongoing clinical trial of a real-time monitoring component also provides important guidelines for future clinical deployments based on WSNs
    • …
    corecore