1,210 research outputs found

    Assessing database and network threats in traditional and cloud computing

    Get PDF
    Cloud Computing is currently one of the most widely-spoken terms in IT. While it offers a range of technological and financial benefits, its wide acceptance by organizations is not yet wide spread. Security concerns are a main reason for this and this paper studies the data and network threats posed in both traditional and cloud paradigms in an effort to assert in which areas cloud computing addresses security issues and where it does introduce new ones. This evaluation is based on Microsoft’s STRIDE threat model and discusses the stakeholders, the impact and recommendations for tackling each threat

    Calm before the storm: the challenges of cloud computing in digital forensics

    Get PDF
    Cloud computing is a rapidly evolving information technology (IT) phenomenon. Rather than procure, deploy and manage a physical IT infrastructure to host their software applications, organizations are increasingly deploying their infrastructure into remote, virtualized environments, often hosted and managed by third parties. This development has significant implications for digital forensic investigators, equipment vendors, law enforcement, as well as corporate compliance and audit departments (among others). Much of digital forensic practice assumes careful control and management of IT assets (particularly data storage) during the conduct of an investigation. This paper summarises the key aspects of cloud computing and analyses how established digital forensic procedures will be invalidated in this new environment. Several new research challenges addressing this changing context are also identified and discussed

    SensorCloud: Towards the Interdisciplinary Development of a Trustworthy Platform for Globally Interconnected Sensors and Actuators

    Get PDF
    Although Cloud Computing promises to lower IT costs and increase users' productivity in everyday life, the unattractive aspect of this new technology is that the user no longer owns all the devices which process personal data. To lower scepticism, the project SensorCloud investigates techniques to understand and compensate these adoption barriers in a scenario consisting of cloud applications that utilize sensors and actuators placed in private places. This work provides an interdisciplinary overview of the social and technical core research challenges for the trustworthy integration of sensor and actuator devices with the Cloud Computing paradigm. Most importantly, these challenges include i) ease of development, ii) security and privacy, and iii) social dimensions of a cloud-based system which integrates into private life. When these challenges are tackled in the development of future cloud systems, the attractiveness of new use cases in a sensor-enabled world will considerably be increased for users who currently do not trust the Cloud.Comment: 14 pages, 3 figures, published as technical report of the Department of Computer Science of RWTH Aachen Universit

    Distributed Analytics Framework for Integrating Brownfield Systems to Establish Intelligent Manufacturing Architecture

    Get PDF
    Intelligent manufacturing otherwise called as smart manufacturing concentrates upon optimising production and processes by making full use of data available. It is regarded as a new manufacturing model where the entire product life cycle can be simplified using various smart sensors, data-driven decision-making models, visualisation, intelligent devices, and data analytics. In the Industry 4.0 era, Industrial Internet of Things (IIoT) architecture platform is required to streamline and secure data transfer between machines, factories, etc. When certain manufacturing industry is equipped with this platform, an intelligent manufacturing model can be achieved. In today’s factories, most machines are brownfield systems and are not connected to any IoT platforms. Thus they cannot provide data or visibility into their performance, health, and optimal maintenance schedules, which would have improved their operational value. This paper attempts to bridge this gap by demonstrating how brownfield equipment can be IIoT enabled and how data analytics can be performed at the edge as well as cloud using two simple use cases involving industrial robot on the abrasive finishing process. The focus of this paper is on how a scalable data analytics architecture can be built for brownfield machines at the edge as well as the cloud
    • …
    corecore