4,477 research outputs found

    Electronic security - risk mitigation in financial transactions : public policy issues

    Get PDF
    This paper builds on a previous series of papers (see Claessens, Glaessner, and Klingebiel, 2001, 2002) that identified electronic security as a key component to the delivery of electronic finance benefits. This paper and its technical annexes (available separately at http://www1.worldbank.org/finance/) identify and discuss seven key pillars necessary to fostering a secure electronic environment. Hence, it is intended for those formulating broad policies in the area of electronic security and those working with financial services providers (for example, executives and management). The detailed annexes of this paper are especially relevant for chief information and security officers responsible for establishing layered security. First, this paper provides definitions of electronic finance and electronic security and explains why these issues deserve attention. Next, it presents a picture of the burgeoning global electronic security industry. Then it develops a risk-management framework for understanding the risks and tradeoffs inherent in the electronic security infrastructure. It also provides examples of tradeoffs that may arise with respect to technological innovation, privacy, quality of service, and security in designing an electronic security policy framework. Finally, it outlines issues in seven interrelated areas that often need attention in building an adequate electronic security infrastructure. These are: 1) The legal framework and enforcement. 2) Electronic security of payment systems. 3) Supervision and prevention challenges. 4) The role of private insurance as an essential monitoring mechanism. 5) Certification, standards, and the role of the public and private sectors. 6) Improving the accuracy of information on electronic security incidents and creating better arrangements for sharing this information. 7) Improving overall education on these issues as a key to enhancing prevention.Knowledge Economy,Labor Policies,International Terrorism&Counterterrorism,Payment Systems&Infrastructure,Banks&Banking Reform,Education for the Knowledge Economy,Knowledge Economy,Banks&Banking Reform,International Terrorism&Counterterrorism,Governance Indicators

    XMPP architecture and security challenges in an IoT ecosystem

    Get PDF
    The elusive quest for technological advancements with the aim to make human life easier has led to the development of the Internet of Things (IoT). IoT technology holds the potential to revolutionise our daily life, but not before overcoming barriers of security and data protection. IoTs’ steered a new era of free information that transformed life in ways that one could not imagine a decade ago. Hence, humans have started considering IoTs as a pervasive technology. This digital transformation does not stop here as the new wave of IoT is not about people, rather it is about intelligent connected devices. This proliferation of devices has also brought serious security issues not only to its users but the society as a whole. Application layer protocols form an integral component of IoT technology stack, and XMPP is one of such protocol that is efficient and reliable that allows real-time instant messaging mechanism in an IoT ecosystem. Though the XMPP specification possesses various security features, some vulnerabilities also exist that can be leveraged by the attacking entity to compromise an IoT network. This paper will present XMPP architecture along with various security challenges that exist in the protocol. The paper has also simulated a Denial of Service (DoS) attack on the XMPP server rendering its services unresponsive to its legitimate clients

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Understanding citizen science and environmental monitoring: final report on behalf of UK Environmental Observation Framework

    Get PDF
    Citizen science can broadly be defined as the involvement of volunteers in science. Over the past decade there has been a rapid increase in the number of citizen science initiatives. The breadth of environmental-based citizen science is immense. Citizen scientists have surveyed for and monitored a broad range of taxa, and also contributed data on weather and habitats reflecting an increase in engagement with a diverse range of observational science. Citizen science has taken many varied approaches from citizen-led (co-created) projects with local community groups to, more commonly, scientist-led mass participation initiatives that are open to all sectors of society. Citizen science provides an indispensable means of combining environmental research with environmental education and wildlife recording. Here we provide a synthesis of extant citizen science projects using a novel cross-cutting approach to objectively assess understanding of citizen science and environmental monitoring including: 1. Brief overview of knowledge on the motivations of volunteers. 2. Semi-systematic review of environmental citizen science projects in order to understand the variety of extant citizen science projects. 3. Collation of detailed case studies on a selection of projects to complement the semi-systematic review. 4. Structured interviews with users of citizen science and environmental monitoring data focussing on policy, in order to more fully understand how citizen science can fit into policy needs. 5. Review of technology in citizen science and an exploration of future opportunities

    Global Diffusion of the Internet - I: India: Is the Elephant Learning to Dance?

    Get PDF
    With his proclamation in 1998 that IT is India\u27s tomorrow , Prime Minister Vajpayee captured a vision of a 21st century India substantially different from that of the previous century, with its high levels of poverty, bloated bureaucracies, and protectionist policies. He envisioned the new India as a major IT power, fully integrated with the global economy, bringing about substantial domestic and international benefit. The Internet is a key to this vision, both as an enabler of technology-based change, and as an indicator of the vision\u27s fulfillment. Using an analytic framework developed by the authors and others, this study documents the growth of the Internet in India, from the pre-Internet networks through the boom of the Internet from 1998 to 2003. The Indian experience provides an example of how fundamental, focused changes in policy and legislation can unleash forces that accelerate Internet diffusion. Private sector initiatives greatly expanded the Internet infrastructure and Internet services market. At the same time, Government initiatives promoted the expansion of the Internet into parts of the country not well served by private ISPs. Poverty and limited telecommunications infrastructure currently limit the rate and extent of Internet expansion. However, time is an ally; the basic elements for continued growth of the Internet are largely in place

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Measuring Success for a Future Vision: Defining Impact in Science Gateways/Virtual Research Environments

    Get PDF
    Scholars worldwide leverage science gateways/VREs for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this paper, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of e.g., their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next-generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE-IG) of the Research Data Alliance. Thus, community-driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations
    • …
    corecore